
Proving Data Race Freedom in Task Parallel
Programs Using a Weaker Partial Order

Benjamin Ogles1, Peter Aldous1, and Eric Mercer1

1Brigham Young University, Provo, UT, 84601, USA

Abstract—Task parallel programming models such as Ha-
banero Java help developers write idiomatic parallel programs
and avoid common errors. Data race freedom is a desirable
property for task parallel programs but is difficult to prove
because every possible execution of the program must be con-
sidered. A partial order over events of an observed program
execution induces an equivalence class of executions that the
program may also produce. The Does-not-Commute (DC) rela-
tion is an efficiently computable partial order used for data race
detection. As a relatively weak partial order, the DC relation
can represent relatively large equivalence classes of program
executions. However, some of these executions may be infeasible,
thus leading to false data race reports. The contribution of this
paper is a mechanized proof that the DC relation is actually
sound for commonly used task parallel programming models.
Sound means that the first data race identified by the DC relation
is guaranteed to be a real data race. A prototype analysis in the
Java Pathfinder model checker shows that the DC relation can
significantly reduce the number of explored states required to
prove data race freedom in Habanero Java programs. In this
application, the search for data race using the DC relation is
both sound and complete.

I. INTRODUCTION

A parallel program execution is said to witness a data race
when two distinct threads access the same memory location
consecutively and one of the accesses is a write. A parallel
program is said to contain a data race when it can produce an
execution that witnesses a data race.

Dynamic analysis attempts to detect data races by observing
a program execution and computing a partial order over the
observed events, as in Serebryany et al. [27]. A pair of events
that are unrelated by the partial order are considered to be
logically concurrent, i.e. they can occur adjacent to one another
in some execution of the program. Therefore, even if the
observed program execution does not witness a data race, the
partial order may still detect a data race if two conflicting
events are logically concurrent.

Weaker partial orders can identify more pairs of concurrent
events and therefore have a higher chance of detecting a data
race if one exists. The challenge is to define a partial order that
is as weak as possible while remaining sound. Sound partial
orders guarantee that the first pair of unrelated conflicting
events in the observed execution actually represents a feasible
data race [20]. A data race is feasible if a program execution
exists that witnesses the reported data race.

The most commonly used sound partial order is Lamport’s
Happens-Before (HB) relation [18]. Events that access the

same lock variable are totally ordered by the HB relation.
The Weak-Causally-Precedes (WCP) relation weakens the HB
relation by relaxing the ordering on locking events [17]. The
WCP relation has also been proven sound.

The Does-not-Commute (DC) relation weakens the WCP
relation to detect data races that the HB and WCP relations
miss [26]. However, the DC relation is unsound; it can report
data races that are infeasible. To compensate, the Vindicator
analysis in [26] attempts to construct the witness execution for
reported data races at runtime. If it cannot construct a witness
execution for a data race, then it is discarded as a false positive.
This ensures that the analysis is sound as a whole, but can also
create a significant runtime overhead.

This work makes the observation that although the DC
relation is unsound in general, there may be classes of program
executions that it can analyze in a sound manner. The main
contribution of this paper is a mechanized proof in Coq that
the first data race detected by the DC relation is always a
feasible data race if the locking events in the observed pro-
gram execution all share the same lock variable. Furthermore,
this class of program executions includes the executions that
are produced by certain task parallel programming models,
making the result practically useful. The proof script exports
theorems that are parametric to a relation over events in a
task parallel program execution, allowing them to be reused
in verifying other partial orders.

Task parallel programming models such as Habanero
Java [3] aim to reduce the complexity of parallel programs
by restricting how threads can interact with each other. These
languages remain useful despite their restrictions because they
include high level constructs such as parallel loops, futures
and mutual exclusion that help developers write idiomatic
parallel programs and avoid common errors. They can also
help gain portable performance across different computer
architectures because parallel computations are expressed as
tasks, a hardware agnostic abstraction. More importantly for
this work, the DC relation is sound on task parallel semantics.

There are multiple definitions for the semantics of Habanero
Java’s isolated construct; for example, the official webpage
for Habanero Java [1] states that all isolated blocks of code
execute in mutual exclusion, while Cavé et al. [3] use the
weaker property that mutual exclusion is only necessary for
isolated blocks containing conflicting accesses. The former
semantics can be implemented as mutual exclusion with a
single global lock. This approach is performant when critical

sections execute infrequently [3] and enables a guarantee of
deadlock freedom. With only one lock, the DC relation is
sound. This work also argues informally that the mechanized
proof can be extended to program executions produced by
other isolated semantics, such as atomic variables.

Although the DC analysis is sound, it is not complete. It
cannot always detect data races that are knowable from an
observed program execution. Furthermore, the program under
analysis may also exhibit different behaviors depending on the
observed thread schedule. A model checker can overcome this
problem by enumerating all of the relevant thread schedules
for the program. Therefore, the DC analysis is sound and
incomplete with respect to one observed execution but the
model checking analysis is sound and complete with respect
to the whole program and a given input.

This work also presents a prototype implementation of the
DC data race detection analysis in the Java Pathfinder model
checker [31], which already has implementations of HB and
WCP. The partial order used for data race detection is also
used as the dependency relation in a dynamic partial order
reduction algorithm [9]. This order directly influences the
number of thread schedules the model checker must explore
to prove the absence of data race in Habanero Java programs
for a given input. Experimental results show that using the
DC relation can significantly reduce the number of thread
schedules explored by the model checker. Because the DC
relation is sound for the Habanero Java programming model,
detected data races are guaranteed to be real errors and can
be immediately reported to the user, avoiding the overhead of
the Vindicator analysis.

In summary, the contributions of this paper are as follows.
• Utilities for verifying partial orders over task parallel

program executions in Coq.
• A mechanized proof that the DC relation is sound for

task parallel programs that use a single global lock.
• An implementation of the dynamic partial order reduction

algorithm in the Java Pathfinder model checker and an
empirical comparison of the HB, WCP and DC relations.

II. PRELIMINARIES

The set M denotes a finite set of memory locations. A
concurrent program is a finite set of threads T that are each
able to to read (rd), write (wrt), acquire (acq), or release (rel)
memory locations throughout their execution. These are gen-
erally referred to as thread actions: A = {rd,wrt, acq, rel}.
Reading and writing are considered access actions. The rest
are locking actions.

The meaning of a concurrent program execution is given
by its observed history of events. An event is a tuple, e ∈
T×A×M , identifying a thread, action, and memory location.
A history, σ = e0 . . . is a sequence of zero or more events.

A history defines a total order ≺σ over its events. The
projection of a history to a thread, σ|t, is a sub-history that
preserves the ordering in ≺σ and includes all events found in σ
that belong to t (and no others). Two events are thread ordered
in a history, ei ≺σTO ej , if and only if they occur in order on

the same thread: ∃t ∈ T (ei ∈ σ|t ∧ ej ∈ σ|t ∧ ei ≺σ ej).
Set membership on a sequence, although a slight abuse of
notation, is used for simplicity in the presentation.

An acquire event ei = 〈t, acq,m〉 in a history has a
match if and only if a release event follows in the same
thread and if no threads acquire or release m in events
occurring between the acquire and the release: ∃ej ∈ σ (ej =
〈t, rel,m〉 ∧ ei ≺σ ej ∧ ∀ek ∈ σ (ei ≺σ ek ≺σ ej =⇒
∀t′ ∈ T (ek 6= 〈t′, acq,m〉 ∧ ek 6= 〈t′, rel,m〉))). The match
for a release event is defined conversely. In this definition,
acquire and release must be matched on the same thread, and
no intervening locking actions can exist on the same memory
location by any thread.

Definition 1 (well-formed history). A history is well-formed
if and only if all release events are matched, all acquire and
release events apply to the same location, and that memory
location is not found in any access events in the history.

A well-formed history dedicates a single memory location
as a global lock. The DC relation is proven sound only on well-
formed histories. In general, any non-deadlocking execution of
a concurrent program that uses a single global lock generates
a well-formed history.

Two access events ei = 〈t, a,m〉 and ej = 〈t′, a′,m〉 on
the same memory location are said to conflict, ei � ej , if they
originate from different threads and either is a write event:
t 6= t′ ∧ (a = wrt ∨ a′ = wrt). A history σ is said to
witness a data-race if two events are adjacent in σ and conflict:
σ = e0 . . . eiejek . . . ∧ ei � ej . Being adjacent in the history
guarantees that there are no intervening lock actions.

It is not easy to determine if there is a data race in a history
if it is not directly witnessed. Approaches to detect data race
based on lock sets track the locking actions in each thread
and report a race on conflicting accesses not protected by a
common lock [6]. Partial order approaches predict from the
observed history other histories that witness the data race if
any exist.

The HB relation is sound in regards to the histories it
predicts meaning that all the predictions are valid histories
that can be generated by the program. As such, a data race
witnessed by a predicted history is real when using the HB
relation. The goal of this work is to show that the DC relation
maintains this important property in limited but useful contexts
while predicting even more histories from the observed one.

The set of events in the critical section in a history
for an acquire event, e = 〈t, acq,m〉, is CS (e) =
{ei | ei ∈ σ|t ∧ e ≺σ ei ≺σ match(e)}. The critical section
for a release event is defined similarly.

Definition 2 (DC Relation). The does-not-commute relation
for a history, ≺σDC , is the smallest partial order over events
in σ that includes ≺σTO and satisfies the following: if there
exists a release event e, an acquire event e′ and two access
events ei and ej such that

ei ∈ CS (e) ∧ ej ∈ CS (e′) ∧ e ≺σ ej ∧ ei � ej
then e ≺σDC ej .

The relation only includes, beyond the per-thread ordering
of events, the orders between events in critical sections and
later conflicting events also in critical sections. This definition
is adapted from [26] and simplified for task parallel programs.
The simplification falls out of the history being well-formed
so there is never more than a single global lock. With a single
lock, it is not necessary to add an order from a release event
to an acquire event when their separate critical sections have
DC ordered events.

The DC relation predicts a data race from an execution if
and only if ∃ei, ej ∈ σ (ei � ej∧ei ≺σ ej∧ei ⊀σDC ej). Any
conflicting accesses that are unordered by DC are data races.
The proof shows that the predicted data race that happens the
earliest in the history is feasible. Later races may or may not
be feasible, since the first data race could influence events
downstream.

Definition 3 (first data race). The DC predicted data race on
events ex and ey (with ex occurring first: ex ≺σ ey) is the
first predicted data race for the history if and only if ex and
ey race and no other races occur before ey and if ex is the
last event before ey that races with ey: ex ⊀σDC ey ∧ ex �
ey ∧ ∀ei, ej ∈ σ (ei ≺σ ej ≺σ ey ∧ ei � ej =⇒ ei ≺σDC
ej) ∧ ∀ez ∈ σ (ez � ey ∧ ez ≺σ ey =⇒ ez ≺σ ex)

The proof in the next section shows that for any well-
formed history with some earliest DC predicted data race,
a sub-history exists that witnesses the data race and can be
constructed from the events of the observed history. This sub-
history is a valid program execution that can be inferred from
the observed execution. Such a sub-history is formalized as a
valid reordering.

A read event, ej = 〈t′, rd,m〉, observes a write event
ei = 〈t,wrt,m〉, given as ei = observes(ej , σ), in a history
if and only if ei ≺σ ej ∧ ∀ek ∈ σ (ei ≺σ ek ≺σ ej =⇒
∀tk ∈ T (ek 6= 〈tk,wrt,m〉)). The observed write is the
value read. This definition naturally assumes a sequentially
consistent memory model. Weaker memory models are not
considered in this work.

Definition 4 (valid reordering). A sub-history σ′ is a valid
reordering of σ if and only if σ′ is well-formed, ∀t ∈ T
(σ′|t is prefix of σ|t), and ∀e ∈ σ′,∀t ∈ T, ∀m ∈ M (e =
〈t, rd,m〉 =⇒ observes(e, σ′) = observes(e, σ)).

The definition preserves locking semantics because the sub-
history must be well-formed. It also maintains the sequential
execution in each thread and the observed write for each read.
Any program that produces the history σ, can also produce
valid reorderings of σ.

A valid reordering of a history σ consists of a subset of
the events in σ. In order for the valid reordering to witness
the first DC predicted race in σ this subset of events is
strategically selected. The strategy employed by the proof
is based on causal events [24], [4]. If ex and ey are the
first DC predicted data race in the original history, then the
set of causal events for the data race is CE (σ, ex, ey) =
{e | e ∈ σ \ {ex, ey} ∧ (e ≺σDC ex ∨ e ≺σDC ey)}. Any causal

event must be DC ordered before one of the events in the data
race.

In order for causal events to be arranged into a valid reorder-
ing, certain events must come before others. For example, read
events must come after their observed write events and release
events must come after their matching acquire events. These
requirements are encoded as a relation over causal events,
called the Witness-Order.

Definition 5 (witness-order). Witness-Order, denoted by
≺, is the smallest reflexive and transitive relation over
CE (σ, ex, ey) that satisfies these rules
• if ei ≺σDC ej , then ei ≺ ej
• if ei is a release event and ej is an acquire event with
ei ≺σ ej then ei ≺ ej

• if ej is an acquire event and ei is a release event with
ej ≺σ ei and match(ej) 6∈ CE (σ, ex, ey), then ei ≺ ej

The first two rules intuitively enforce that read events
observe the same write events as in the original history and
that critical sections do not overlap. The last rule handles the
case where one of the events that races occurs in a critical
section. In this case, the acquire event is a causal event but
the matching release event is not. For the causal events to be
arranged into a well-formed history, this acquire event must
be the last event in the history that accesses the global lock.
Therefore, the third rule of Witness-Order ensures that this
acquire event is ordered after every other release event in the
reordering.

III. SOUNDNESS OF DC

This section gives a sketch of the proof that the first
DC predicted race in a well-formed task parallel program
history is always a feasible data race. The Coq source code is
available for download at https://bitbucket.org/byu-vv/traces-
coq/src/master.

Let the events ex = 〈tx, ax,m〉 and ey = 〈ty, ay,m〉 form
the first DC predicted race in the history σ. Also, without loss
of generality, let ey be the last event in σ, as it can always
be sliced to this point during an analysis. By the definition of
feasible data race, it is sufficient to prove that there exists a
valid reordering of σ that witnesses the data race of ex and ey .
This is done constructively by selecting a subset of events from
σ, reordering them into a new sub-history and appending ex
and ey to this reordering. It is then shown that the sub-history
with ex and ey last is a valid reordering of σ. Because ex and
ey are the last events in the sub-history, it also witnesses the
data race, and it is concluded that ex and ey must form a real
race. A few supporting lemmas simplify the proof.

Lemma 1. If for two events e = 〈t, a, n〉 and e′ = 〈t′, a′, n′〉
in σ, e ≺σDC e′ ∧ t 6= t′, then ∃er = 〈tr, rel, l〉 such that
e ≺σTO er ∧ er ≺σDC e′

This follows directly from the definition of the DC relation.

Lemma 2. If for an acquire event e ∈ CE (σ, ex, ey),
match(e) /∈ CE (σ, ex, ey), then e ≺σTO ex or e ≺σTO ey

Let e = 〈t, acq, l〉. Because e is a causal event it must be
DC ordered before ex or ey . Assume that t 6= tx ∧ t 6= ty .
Then by Lemma 1, there must exist a release event thread
ordered after e that is DC ordered before ex or ey . But this
is a contradiction because σ is well-formed and match(e) is
not a causal event, so e must be the last causal event on its
thread to access the global lock.

Lemma 3. There is at most one acquire event e such that
e ∈ CE (σ, ex, ey) and match(e) /∈ CE (σ, ex, ey)

As mentioned in Sec. II, this case only appears when one of
ex and ey occur in a critical section. If there were more than
one causal acquire event without a matching causal release
event, then either both ex and ey occur in critical sections
or one of their threads performed two acquire events without
performing a release event. The first case is a contradiction
because the DC relation always orders conflicting events in
critical sections, so ex and ey would not be a data race. The
second case is a contradiction because σ is a well-formed
history. As defined in this work, well-formed histories do not
permit reentrant locks.

Lemma 4. ≺ is antisymmetric.

By Lemma 3 there are two cases to consider. In the first
case, for every acquire event e ∈ CE (σ, ex, ey), match(e) is
also a causal event: match(e) ∈ CE (σ, ex, ey). Therefore the
last rule of ≺ will never apply and ≺ ⊆ ≺σ . Because ≺σ is
antisymmetric, ≺ is also antisymmetric in this case.

In the second case, there is one causal acquire event e =
〈t, acq, l〉 such that match(e) is not a causal event. If there is
no release event e′ such that e ≺σ e′ then the third rule of ≺
will still never apply. Therefore ≺ ⊆ ≺σ still holds and ≺ is
antisymmetric.

Otherwise, some e′ = 〈t′, rel, l〉 exists such that e ≺σ e′

and e′ ≺ e. If a cycle exists in ≺, then it must be through
such a path for some e′, because all other edges in ≺ align
with the total order of the original history. However, ≺ only
orders e before causal events on its same thread because there
are no release events thread ordered after e that are also causal
events. Therefore, if a cycle exists through the path e ≺ e′,
then t = t′ which contradicts the previous statement.

Let σ′ be any linearization of ≺.

Lemma 5. For any thread t, σ′|t is a prefix of σ|t.

Because ≺σTO ⊆ ≺σDC , for any causal event e ∈
CE (σ, ex, ey), any event e′ ∈ σ such that e′ ≺σTO e is also a
causal event. In addition, the first rule of ≺ ensures that all
events on the same thread will be ordered in σ′ as they were
in σ.

Lemma 6. σ′ is well-formed.

Because of Lemma 3, there are two cases to consider. In the
first case, for every causal acquire event, its matching release
is also a causal event. Then the first and second rule of ≺
ensure that all locking events are ordered in σ′ as they were
in σ. Because σ is consistent with lock semantics, so is σ′.

In the second case, there is one causal acquire event such
that its matching release is not a causal event. Then the rules
of ≺ ensure that this acquire event is the last locking event in
σ′ and the rest of the locking events are ordered as in σ.

Lemma 7. For every read event e ∈ CE (σ, ex, ey),
observes(e, σ) = observes(e, σ′)

Because ex and ey are the first race in σ and observes(e, σ)
is either an event on the same thread as e or observes(e, σ) �
e, it must be the case that observes(e, σ) ≺σDC e. By the
same logic, for any two causal events ei, ej ∈ CE (σ, ex, ey),
if ei � ej , then ei ≺σDC ej ∨ ej ≺σDC ei. Therefore the write
events on the variable accessed by observes(e, σ) and e are
totally ordered in σ′

Theorem 1. ≺ is a partial order over CE (σ, ex, ey) and the
history σ′ = e0 . . . exey is a valid reordering of σ.

The definition of causal events guarantees that ex and
ey are enabled at the end of σ′. The rest follows
from Lemma 4, Lemma 5, Lemma 6 and Lemma 7.

A. Other Implementations of Mutual Exclusion

The isolated keyword in Habanero Java is used to mark
regions of code that may need to be executed in a mutually
exclusive manner. The semantics of isolated ensures that code
in isolated regions will be executed mutually exclusive from
other interfering isolated regions, where interfering means
that the isolated regions contain conflicting access events.
The simplest implementation of isolated that preserves these
semantics is a single global lock, which is used in this
work. However, other implementations are possible in specific
cases such as atomic Java variables and software transactional
memory.

These implementations can all be considered specific in-
stances of a more general programming model where multiple
lock variables are accessed but any given thread can only hold
one lock at a time. The mechanized proof has not yet been
generalized to this programming model.

For such an effort, Lemma 3 would need to be modified
to state that there is at most one causal acquire event for
each lock variable whose matching release is not also a causal
event. Lemma 6 would then hold by an argument very similar
to the one presented for the simpler programming model.
Lemma 1, Lemma 2, Lemma 5 and Lemma 7 would still hold
as well. It is left to show that ≺ is still always antisymmetric.
A cycle can only exist in ≺ if a causal acquire event’s
matching release is not a causal event and there is some access
event thread ordered after the acquire event that is somehow
ordered before a different causal release event on the same
lock variable. Such a situation would still be impossible in
the more general programming model because of Lemma 1
and Lemma 2.

B. Weaker Partial Order

The mechanized proof is written such that the main theorem
can be reused to verify other partial orders over well-formed

Thread 1 Thread 2
acq(l)
wrt(x)
rel(l)

acq(l)
wrt(x)
rel(l)
wrt(x)

Fig. 1. An execution with a predictable race but no DC race.

1: procedure INSERTBACKTRACKINGPOINTS
2: s← peek(S)
3: {t} ← backtrack(s)
4: p← s
5: repeat
6: p← pre(S, p)
7: if TO(p) 6v TO(s) ∧DC(p) v DC(s) then
8: if tid(s) ∈ enabled(p) then
9: backtrack(p)← backtrack(p) ∪ {t}

10: else
11: backtrack(p)← enabled(p)
12: end if
13: end if
14: until p = null
15: end procedure

Fig. 2. The DPOR algorithm.

histories. Fig. 1 shows a history with a predictable data
race that the DC relation fails to detect. The data race is
predictable because the events in the observed execution can be
rearranged into a valid reordering that witnesses it. However,
the DC relation conservatively orders the write events in
critical sections even when there may be no dependent read
events on that same memory location later in the history,
causing it to miss the error.

The Coq model introduced by this work has been used to
define another partial order, weaker than the DC relation, that
addresses this issue. This partial order only orders conflicting
events across critical sections if one is a read event and one is
a write event. In order to prove the soundness of this partial
order, the definition of data race was modified to exclude
accesses that are protected by the same lock. Although this
new relation can detect data races missed by the DC relation
and has been proven sound on well-formed histories, it has
not been proven complete and no algorithm currently exists
to compute it. For these reasons, the DC analysis remains the
focus of this paper.

IV. IMPLEMENTATION

This section presents a prototype implementation of a sound
and complete data race detection analysis, developed as a tool
in the Java Pathfinder (JPF) model checker [31]. The source
code is available for download at https://bitbucket.org/byu-
vv/jpf-hj/src/FMCAD2019/.

JPF can execute a program compiled to Java bytecode and
expose the program events to tools that consume them. The
tools in this work are vector clock algorithms that compute the
DC, WCP and HB relations respectively [26], [17], [8]. The

1: procedure ONREAD(t, x, isolated)
2: if isolated then
3: Ct ← Ct t Lw

x

4: Rl ← Rl ∪ {x}
5: end if
6: if Wx 6v Ct then
7: report DC race
8: end if
9: Rx(t)← Ct(t)

10: end procedure
1: procedure ONWRITE(t, x, isolated)
2: if isolated then
3: Ct ← Ct t Lw

x t Lr
x

4: Wl ←Wl ∪ {x}
5: end if
6: if Wx 6v Ct ∨Rx 6v Ct then
7: report DC race
8: end if
9: Wx(t)← Ct(t)

10: end procedure
1: procedure ONFORK(p, c)
2: Cc ← Cp

3: Cc(c)← Cc(c) + 1
4: Cp(p)← Cp(p) + 1
5: Pc ← Pp

6: Pc(c)← Pc(c) + 1
7: Pp(p)← Pp(p) + 1
8: end procedure
1: procedure ONJOIN(p, c)
2: Cp ← Cp t Cc

3: Pp ← Pp t Pc

4: end procedure
1: procedure ONACQUIRE(t)
2: s← 〈{t},DoneSetRef()〉
3: push(S, s)
4: end procedure
1: procedure ONRELEASE(t)
2: TO(peek(S))← Pt

3: DC(peek(S))← Ct

4: for x ∈ Rl do
5: Lr

x ← Lr
x t Ct

6: end for
7: for x ∈Wl do
8: Lw

x ← Lw
x t Ct

9: end for
10: Rl ←Wl ← ∅
11: Ct(t)← Ct(t) + 1
12: InsertBacktrackingPoints()
13: end procedure

Fig. 3. The DC data race detection algorithm.

vector clock algorithm implementations are taken directly from
related work with almost no modifications other than those
specific to JPF. Fig. 3 shows the analysis pseudo code with
the DC tool operations inlined for ease of presentation.

A vector clock is a function V C ∈ T → N that maps
threads to counter values. Vector clocks also support point-
wise comparison (v) and point-wise maximum (t) operations.
They are updated in the algorithm such that their comparison
is equivalent to set membership in the DC partial order or
thread total order.

For each thread t, vector clocks Ct and Pt are maintained

to compute the DC relation and thread order respectively. Let
ei, ej ∈ σ be the last events processed by the analysis on
threads ti and tj respectively. Then Ci v Cj =⇒ ei ≺σDC ej .
Similarly, Pi v Pj =⇒ ei ≺σTO ej .

For each shared memory location x, vector clocks Rx, Wx,
Lrx and Lwx are also maintained to store the timestamps of
threads that access x. Rx and Wx are updated on accesses to
x to store the current counter value for the accessing thread
so they can be used for checking for data race. For example,
in order for a thread t to safely read x, it must have a counter
value for every other thread in its own vector clock Ct greater
than or equal to the corresponding counter value in Wx. Lrx
and Lwx are updated on release events to store the maximum
counter values for all threads that have accessed x in a critical
section. This ensures that the next thread to access x inside of
a critical section can update itself with the same max counter
values, thus synchronizing itself with the other threads.

Due to the simplified definition of the DC relation for
task parallel programming languages, the vector clock queues
used in [26] are not necessary. Otherwise, the algorithm for
computing the DC relation and reporting data race on access
events remains unchanged and the reader should refer to
that work for more information. Thread order is extended
to accommodate dynamic threads that can be forked and
joined. The procedures OnFork and OnJoin ensure that child
threads initially inherit the timestamps of their parents and
communicate back any synchronization when they are joined.

JPF runs the input program until completion, passing every
thread action and memory access to the tool, allowing the DC
vector clock algorithm to analyze the entire history. Because
the DC relation is a sound partial order, any detected data
race is a real error and is reported to the user. However, the
DC relation is not complete, it cannot guarantee that a data
race is always detected if one exists in the program. This is
due to some programs exhibiting different behavior depending
on how the scheduler resolves mutual exclusion. In order to
always detect a data race if one exists, the analysis in Fig. 3
uses JPF to rewind the program, reset the analysis state and
explore different thread schedules.

JPF executes programs in transitions which are created by
the tool. A transition marks a program state and is a tuple
s ∈ P(T)× P(T), identifying a backtrack set of threads and
a set of threads already explored from this state, called a done
set. The transitions are stored in a stack S and JPF explores the
transitions in a depth first manner, always scheduling a thread
from the backtrack set of the transition at the top of the stack
if it is not also in the transition’s done set. The analysis uses
a dynamic partial order reduction algorithm (DPOR) [9] to
populate the bactrack sets of transitions.

DPOR is a well known result in software model checking
that explores a persistent set of transitions from every state
by only backtracking on dependent transitions. This results in
exploring a reduced state space that is sufficient for verifying
safety properties in parallel programs. Dependent means that
program behavior may depend on the relative execution order
of two transitions. In general, dependent transitions correspond

Thread 1 Thread 2 Thread 3
wrt(x)
acq(l)
wrt(x)
rel(l)

acq(l)
wrt(y)
rel(l)

acq(l)
rd(y)
wrt(x)
rel(l)

Fig. 4. An execution with conditional dependence.

to shared memory accesses. However, in the context of data
race detection, the only shared memory accesses that are
allowed to be enabled in the same state are accesses inside
critical sections. Therefore, the DPOR algorithm will cause
the model checker to backtrack when two critical sections are
dependent.

Dependent critical sections are identified by checking if the
release event of the critical section earlier in the history is DC
ordered before the release event of the critical section later
in the history. If the two release events are not also thread
ordered, then their critical sections must contain conflicting
events and the model checker must explore an execution
where they are performed in the opposite order. Therefore a
backtracking point is added to explore the execution where the
critical sections are executed in another order. In this way, the
partial order used for data race detection directly effects the
number of backtracking points added by the DPOR algorithm.
Because the DC relation identifies more independent critical
sections, it can add fewer backtracking points and is the most
effective at reducing the explored state space.

The procedure OnRelease associates the current transition
with the present values of Ct and Pt to use when searching
for dependent transitions. This is done via the utility functions
DC and TO which map transitions to the DC and thread order
vector clocks associated with their release events.

Transitions are initialized in OnAcquire with a backtrack set
holding only the current thread and a done set shared between
transitions at the same level in the state graph explored by
JPF (the DoneSetRef function handles this plumbing). The
procedure InsertBacktrackingPoints implements DPOR in JPF
and is invoked at each release event. The procedure traverses
the transition stack to find transitions that are dependent with
the current transition. If a dependent transition is found, the
presently executing thread is added to the backtrack set of
the dependent transition. If the desired thread is not enabled
in the dependent state, then all enabled threads in that state
are conservatively added to the backtrack set in an effort to
eventually enable the desired thread.

A. Correctness of the Analysis

The analysis uses the DC relation to check each execution
for data race while simultaneously identifying dependent crit-
ical sections that must be interleaved by the model checker to

generate more executions. This work assumes the correctness
of the vector clock algorithm that models the DC relation and
thread order as they are taken directly from other works. The
whole analysis is precise, i.e. it does not report false data
races and a data race is always reported if one exists in the
program. It does not report false data races because the DC
data race detection analysis is sound with respect to each
explored execution as shown by the proof in Sec. III.

The analysis always reports a data race if one exists because
the DPOR algorithm explores all non-deterministic thread
interleavings that could reveal a data race. This property is
contingent on using a valid method for detecting dependent
transitions. A dependency relation is valid if independent tran-
sitions cannot enable or disable one another and if exploring
two independent transitions consecutively from the same state
always results in the same unique successor state.

Transitions in this paper are created at acquire events and so
are not ended until after the matching release event is executed.
This means that no transition can disable another since the
lock will always be available at the beginning of transitions.
Transitions cannot enable one another either unless they are on
the same thread, in which case they would not be independent.

Exploring two independent transitions from the same state
will always lead to the same unique successor state because
independent critical sections access disjoint memory locations.
The exception to this rule occurs when a data race exists in
the program, in which case it will be detected by the analysis
because independent critical sections will not hide the data
race by imposing a DC ordering across threads.

The DPOR algorithm in this paper differs from the algo-
rithm in [9] in two significant ways. First, because there is
no way to inspect the next transition of every thread before
executing it, the algorithm in this paper inserts backtracking
points one thread at a time. In contrast, the original DPOR
algorithm inserts backtracking points for every thread at every
transition. Second, because the DC relation is a conditional
dependency relation [16], the algorithm in this paper does
not stop inserting backtracking points at the first dependent
transition that is found.

As an example, consider the history in Fig. 4. The last write
event to the memory location x in thread 3 may depend on
the value read by the immediately previous read event on y.
In other words, it may be the case that thread 3 only writes
to x when its critical section executes after the critical section
in thread 2.

Because of this, the DPOR algorithm in this paper cannot
stop at the first dependent transition found, as is done in [9]. If
this were the case, then in Fig. 4, thread 3 would only be added
as a backtracking point in the transition of thread 2 which is
the first dependent transition found by the algorithm. But then
in the new execution where thread 1 executes and then thread
3 and 2, thread 3 may not write to x and a backtracking point
for thread 3 would not be added to the transition of thread 1.
In this case, it would actually cause the analysis to miss the
data race between thread 1 and thread 3 on x that is detected
when the critical sections are executed in the order thread 2, 3

2 4 6 8 10

100

101

102

103

104

105

106

Threads

E
xe

cu
tio

ns

Findmax

DC
HB

WCP

Fig. 5. The Findmax results: explored executions by number of threads.

0 5 10 15

100

101

102

103

104

105

106

Threads

E
xe

cu
tio

ns

Indexer

DC
HB

WCP

Fig. 6. The Indexer results: explored executions by number of threads.

and then 1. Further engineering could relax the requirement of
traversing the entire transition stack by keeping track of which
shared memory locations have contributed to each dependency
and stopping when all memory locations have been accounted
for.

V. RESULTS

Two benchmarks were used to test how using the DC
relation can reduce the number of explored executions required
to prove data race freedom in Habanero Java programs. Each
benchmark takes the number of threads to use as input and
contains no data races. Vector clock analyses for the HB and
WCP relation were also implemented and tested.

The first benchmark is a program called findmax, which was
taken as a snippet of a function in the DualSPHysics project
at https://github.com/DualSPHysics/DualSPHysics. The code
was written in OpenMP and translated to Habanero Java.

The findmax benchmark takes a large array of integers as
input. Each thread takes a equal size chunk of the array and
finds the maximum of the sub-array. An isolated region is then
used to update the shared value max which is the result. The

number of executions required to verify the implementation
for an increasing number of threads is shown in Fig. 5. The
figure shows execution numbers for DC with circles, for HB
with × marks, and for WCP with + marks.

The graph shows that the WCP relation and the DC relation
perform identically in this case. They both perform slightly
better than the HB relation because they avoid reordering
critical sections that only read max and do not write to it.

The second benchmark is called indexer which is translated
into Habanero Java from [9]. In this program, each thread
generates integers that are then placed in a shared hash table.
The hash table is accessed inside an isolated region in case the
hash codes conflict. Because most hash codes do not conflict,
many of the critical sections are independent. The results
are shown for indexer and an increasing number of threads
in Fig. 6. This figure uses the same convention for execution
numbers as does Fig. 5.

The HB relation performs very poorly in this case and
cannot tractably analyze a program with more than 4 threads.
The composition of the WCP relation with the HB relation
has an effect on this benchmark and the WCP relation results
in an intractable analysis as soon as the first hash codes
conflict. No hash codes conflict until 12 threads are used, so
the WCP and DC relation perform identically up to this point,
correctly identifying all critical sections as independent. The
DC analysis is able to scale further than the other analyses
and analyze the program even when it uses 16 threads.

VI. RELATED WORK

As mentioned in Sec. I, common partial orders used for
data race detection include the Happens-Before (HB) [18],
the Weak-Causally-Precedes (WCP) [17] and the Does-not-
Commute (DC) [26] relation. The Schedulable-Happens-
Before (SHB) relation [20] strengthens the HB relation in
order to guarantee that every data race detected by the relation
(not just the first) is a real error. Rather than compute a
fixed partial order, the data race detection analysis presented
in [24] tries to construct a witness execution for every pair of
conflicting events.

Dynamic analyses have been developed specifically for task
parallel programs because the simpler programming model
allows for algorithmic optimizations. However, many of these
analyses cannot reason about the arbitrary synchronization cre-
ated by critical sections without reporting false data races [7],
[25], [15], [29], [6], [21], [30], [28], [33]. Other analyses can
reason precisely about mutual exclusion but only use the HB
relation to detect data race [22], [34].

Dynamic partial order reduction was originally presented
in [9] as a way to exploit information available at run time to
reduce the state space explored by software model checkers.
That work only considered fixed dependency relations for
simplicity. This work and others [16] consider conditional
dependency relations, where two transitions may be indepen-
dent in some contexts but not in others. Dynamic partial order
reduction has been implemented in JPF before in [23] but the
analysis used a fixed dependency relation and targeted more

general concurrent programs and therefore lacked some of
the optimizations made possible when analyzing task parallel
programs. For example, the task parallel programming model
allows JPF to completely implement the DPOR algorithm
while only creating transition objects at the beginning of crit-
ical sections, instead of detecting shared objects dynamically
and creating backtracking objects at memory access events.

A number of enhancements to DPOR have been proposed
that are complementary to this work. For example, an analysis
may record the context in which backtracking points were
created in order to focus the search after backtracking [2].
Other improvements use dynamic information such as the
values written to variables, to determine whether transitions
may actually be independent [4]. The model checking analysis
presented in [10] uses static analysis to reduce the number of
memory locations tracked for shared accesses.

As an alternative to dynamic partial order reduction, some
analyses use an SMT solver to compute the entire set of other
program executions that can be inferred from the observed
execution [12], [11], [13]. This approach has the benefit of
guaranteeing that the set of executions explored is optimal.
And although the analysis can be parallelized effectively, the
SMT queries can become huge for even moderately sized
programs. This paper has assumed a sequentially consistent
memory model while other model checking analyses have been
extended to weaker models [14].

Chen et al. propose a parametric framework for proving
that a partial order is sound [5]. The framework will yield
a soundness proof for a given partial order as a corollary
of its main theorem. The main theorem is a statement about
traces and says that any property that holds over the operation
of swapping an adjacent pair of events in a trace that are
unrelated by the partial order will hold for every linearization
of the partial order. However, this definition of sound is too
strong for the goal of this work as the desired property is that
of valid reordering and the DC relation yields linearizations
that are not valid traces. Therefore the proof presented in this
work only proves that a valid reordering exists for every data
race, not that every linearization of the partial order is a valid
reordering.

Many claims with accompanying theorems and proofs are
made in the literature of data race detection. As they get
more difficult to reason about and implement, mechanized
proofs have helped confirm that the work is correct. FastTrack
implementations have been verified in Coq to ensure that
the instrumentation and synchronization used in the data race
detection do not introduce error [19], [32].

VII. CONCLUSION

This work presented a proof that the DC relation is sound for
a class of concurrent programs that includes commonly used
task parallel programming models. A prototype analysis in the
JPF model checker demonstrated the benefit of using a weaker
partial order for data race detection. The mechanized proof
provides a foundation for finding more insights and justifying
stronger claims in the future.

REFERENCES

[1] Habanero-Java - Habanero - Rice University campus wiki.
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-Java.

[2] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sag-
onas. Optimal dynamic partial order reduction. In ACM SIGPLAN
Notices, volume 49, pages 373–384. ACM, 2014.

[3] Vincent Cav, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-
java: The new adventures of old x10. 08 2011.

[4] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant
Sinha, and Kapil Vaidya. Data-centric dynamic partial order reduction.
Proceedings of the ACM on Programming Languages, 2(POPL):31,
2017.

[5] Feng Chen and Grigore Roşu. Parametric and sliced causality. In
International Conference on Computer Aided Verification, pages 240–
253. Springer, 2007.

[6] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H.
Randall, and Andrew F. Stark. Detecting data races in cilk programs
that use locks. In Proceedings of the Tenth Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA ’98, pages 298–309, New
York, NY, USA, 1998. ACM.

[7] Mingdong Feng and Charles E Leiserson. Efficient detection of
determinacy races in cilk programs. Theory of Computing Systems,
32(3):301–326, 1999.

[8] Cormac Flanagan and Stephen N Freund. Fasttrack: efficient and precise
dynamic race detection. In ACM Sigplan Notices, volume 44, pages
121–133. ACM, 2009.

[9] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order re-
duction for model checking software. SIGPLAN Not., 40(1):110–121,
January 2005.

[10] M. Gligoric, P. C. Mehlitz, and D. Marinov. X10x: Model checking
a new programming language with an ”old” model checker. In 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation, pages 11–20, April 2012.

[11] Jeff Huang. Stateless model checking concurrent programs with maxi-
mal causality reduction. In ACM SIGPLAN Notices, volume 50, pages
165–174. ACM, 2015.

[12] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound
predictive race detection with control flow abstraction. SIGPLAN Not.,
49(6):337–348, June 2014.

[13] Jeff Huang and Arun K. Rajagopalan. Precise and maximal race
detection from incomplete traces. SIGPLAN Not., 51(10):462–476,
October 2016.

[14] Shiyou Huang and Jeff Huang. Maximal causality reduction for tso
and pso. In ACM SIGPLAN Notices, volume 51, pages 447–461. ACM,
2016.

[15] Weixing Ji, Li Lu, and Michael L Scott. Tardis: Task-level access
race detection by intersecting sets. In Workshop on Determinism and
Correctness in Parallel Programming (WoDet), Houston, TX, 2013.

[16] Shmuel Katz and Doron Peled. Defining conditional independence using
collapses. Theoretical Computer Science, 101(2):337–359, 1992.

[17] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. Dynamic race
prediction in linear time. SIGPLAN Not., 52(6):157–170, June 2017.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[19] William Mansky, Yuanfeng Peng, Steve Zdancewic, and Joseph Devietti.
Verifying dynamic race detection. In Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs, pages 151–
163. ACM, 2017.

[20] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. What happens-
after the first race? enhancing the predictive power of happens-
before based dynamic race detection. Proc. ACM Program. Lang.,
2(OOPSLA):145:1–145:29, October 2018.

[21] John Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. In Supercomputing’91: Proceedings
of the 1991 ACM/IEEE conference on Supercomputing, pages 24–33.
IEEE, 1991.

[22] Radha Nakade, Eric Mercer, Peter Aldous, and Jay McCarthy. Model-
checking task parallel programs for data-race. In Aaron Dutle, César
Muñoz, and Anthony Narkawicz, editors, NASA Formal Methods, pages
367–382, Cham, 2018. Springer International Publishing.

[23] Eric Noonan, Eric Mercer, and Neha Rungta. Vector-clock based partial
order reduction for jpf. ACM SIGSOFT Software Engineering Notes,
39(1):1–5, 2014.

[24] Andreas Pavlogiannis. Fast, sound and effectively complete dynamic
race detection. CoRR, abs/1901.08857, 2019.

[25] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and
Eran Yahav. Efficient data race detection for async-finish parallelism.
In International Conference on Runtime Verification, pages 368–383.
Springer, 2010.

[26] Jake Roemer, Kaan Genç, and Michael D Bond. High-coverage,
unbounded sound predictive race detection. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 374–389. ACM, 2018.

[27] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and
Dmitriy Vyukov. Dynamic race detection with llvm compiler. In Inter-
national Conference on Runtime Verification, pages 110–114. Springer,
2011.

[28] Rishi Surendran and Vivek Sarkar. Dynamic determinacy race detection
for task parallelism with futures. In International Conference on Runtime
Verification, pages 368–385. Springer, 2016.

[29] Robert Utterback, Kunal Agrawal, Jeremy Fineman, I Lee, and Ting
Angelina. Efficient race detection with futures. arXiv preprint
arXiv:1901.00622, 2019.

[30] Robert Utterback, Kunal Agrawal, Jeremy T Fineman, I Lee, et al.
Provably good and practically efficient parallel race detection for fork-
join programs. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 83–94. ACM, 2016.

[31] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model checking programs. Automated software
engineering, 10(2):203–232, 2003.

[32] James R Wilcox, Cormac Flanagan, and Stephen N Freund. Verified
ft: a verified, high-performance precise dynamic race detector. In ACM
SIGPLAN Notices, volume 53, pages 354–367. ACM, 2018.

[33] Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. Parallel data race
detection for task parallel programs with locks. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 833–845. ACM, 2016.

[34] Lechen Yu and Vivek Sarkar. Gt-race: graph traversal based data
race detection for asynchronous many-task parallelism. In European
Conference on Parallel Processing, pages 59–73. Springer, 2018.

