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ABSTRACT

Early work in implicit information flow detection applied only to flat, procedureless

languages with structured control-flow (e.g., if statements, while loops). These

techniques have yet to be adequately extended and generalized to expressive languages

with interprocedural, exceptional, and irregular control-flow behavior. This work

presents an implicit information flow analysis suitable for languages with conditional

jumps, dynamically dispatched methods, and exceptions. Specifically, this analysis

operates on Dalvik bytecode, the substrate for Android.

In order to capture information flows across interprocedural and exceptional

boundaries, this analysis uses a projection of a small-step abstract interpreter’s rich

state graph instead of the control-flow graph typically used for such purposes in weaker

linguistic settings. This technique proves termination-insensitive noninterference.

An optimized variant of this analysis performs taint tracking after abstract

interpretation instead of combining the two. It does so by removing the additional

components in each state and instead performs the same analysis a posteriori. The

a posteriori analysis dramatically outperforms its augmented-state counterpart. In

addition to improving performance, this independence broadens the applicability of

the underlying approach to information-flow analysis.
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CHAPTER 1

THESIS

It is feasible and useful to track implicit information flows soundly in imperative

languages with conditional jump statements, virtual methods, and exceptional control

flow.



CHAPTER 2

INTRODUCTION

With limited resources available for security, many modern software developers

make a rational choice to focus on finding and fixing bugs. Every bug that they fix is

a bug that cannot affect users or hurt the developers’ brand, so individual bugs are

useful intermediate results. In contrast, a partial proof is no proof at all. Given these

limitations, it is perfectly reasonable to focus on the identification of bugs—and this

focus contributes to software quality.

However, there is always another bug. Despite the fact that humankind has

known about overflow bugs for 45 years [1] and despite the fact that many tools have

been developed that help programmers to identify and prevent them, buffer overflow

vulnerabilities continue to be found in modern software systems. The same is true of

many other classes of bugs; they have been known for some time and yet they continue

to appear.

Since many developers choose (understandably) not to pursue assurance, end users

frequently find themselves without truly secure options for computing. For some users,

this is particularly troublesome. For example, administrators of military bases or

government offices need particularly strong security guarantees. If personnel can use

phones or computers on military bases or in diplomatic buildings and if those devices

can be compromised, malware could exfiltrate information that would endanger the

people those buildings serve. Malware could also be used for corporate espionage or

to compromise the security of nations. In these and other cases, the potential costs

incurred by inadequate security are high enough to justify considerable investment in

security.

Users who are willing to devote large portions of their resources might choose to

perform analyses that provide assurance, even though these analyses may require time
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and effort from experts to handle false positives. The ideal analysis for these users is

automated, operates without cooperation by the software’s developers, and proves the

absence of the classes of bugs that concern them. This analysis must also be suitable

for application to low-level languages, as most source code is not made available to

users. Moreover, the analysis must be applicable to expressive low-level languages; in

other words, it must be able to handle language features like functions and exceptional

control flow.

2.1 Contributions

To the end of solving this problem, this dissertation makes the following contribu-

tions:

• The design of an original analysis for information flow tracking in expressive

low-level languages;

• a proof that the analysis demonstrates noninterference;

• the design of an equivalent, optimized analysis; and

• an empirical evaluation of the performance of both analyses.

These contributions serve as a demonstration that guarantees can be made about

information flows in real-world programs, as well as a demonstration of how these

guarantees can be obtained.

2.2 Background

This work uses small-step abstract interpretation to model programs’ behaviors.

Its goal is to prove noninterference, or the property that information does not leak.

Section 2.2.1 describes small-step abstract interpretation. Section 2.2.2 describes

postdominance, which is used to prove noninterference. Section 2.2.3 explains

noninterference.

2.2.1 Small-step abstract interpretation

The CESK [11] evaluation model represents states in an interpreter’s execution

as tuples of control (C), environment (E), store (S), and continuations (K). Each
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component captures part of the state of an interpreter at a moment during execution.

The control represents where the interpreter is in the program; for example, it may be

a line number or label. The environment maps variables to addresses and the store

maps addresses to values; this indirection simplifies interpretation in the presence of

mutation. The continuation contains the information used to return from a function.

In an imperative program, these terms roughly approximate (respectively) the program

counter, the frame pointer, the heap, and the stack. Crucially, models like CESK

produce states that are self-contained. Being self-contained, the successor ς ′ to any

state ς may be calculated knowing nothing more than the information contained in ς.

Concrete, or ordinary, interpretation can be accomplished by calculating the transitive

closure of succession from some initial state ς0.

The semantics of the CESK interpreter use production rules to describe its behavior.

Different instructions or forms in the language get different production rules. For

example, the Move instruction is a summary of the various move instructions in Dalvik

bytecode. Each one copies a datum from one register to another. Figure 2.1 contains

the concrete semantics of the Move instruction. It makes use of a statement lookup

metafunction I, a metafunction next that retrieves the next code point, and an

appropriately defined state space. As the semantics of Move demonstrate, control

passes from cp to the following instruction next (cp), the frame pointer φ is unchanged,

the store σ is updated so that the address for the destination register rd contains

the value stored at the address for the source register rs, and the continuation κ is

unchanged. Addresses for registers are pairs of a frame pointer and a register name.

Section 3.2.3 contains the semantics for every instruction in a small-step concrete

interpreter, including the semantics of the taint tracking mechanism.

Section 2.2.1.1 describes the abstraction of values to guarantee finiteness. Sec-

tion 2.2.1.2 describes the abstraction of addresses. Section 2.2.1.3 describes the

process of abstract state exploration. Finally, Section 2.2.1.4 describes widening,

which decreases precision but generally increases speed in abstract interpretation.

2.2.1.1 Abstract values

Van Horn and Might [35] demonstrated that concrete CESK interpreters can be

turned into small step abstract interpreters by abstracting their state spaces and
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I (cp) = Move(rd, rs)

(cp, φ, σ, κ)→ (next (cp) , φ, σ′, κ)
, where

sad = (φ, rd)

sas = (φ, rs)

σ′ = σ[sad 7→ σ (sas)]

Figure 2.1: Semantics for a move instruction in a concrete interpreter

by modifying their transition rules. An abstract state space combines concrete values

into abstract values in order to guarantee that the state space is finite, which makes

a proof of termination possible. In general, the choice of which abstractions to use

is left to the analyst. More precise abstractions expand the size of the state space,

making the asymptotic complexity of the analysis larger. However, increased precision

can diminish the portion of the state space that is explored, leading to faster runtime.

For the sake of illustration, this section describes some commonly used abstractions.

By convention, variables and sets that describe abstract values are designated with

the ˆ diacritic; concrete frame pointers are given names such as φ and φ′ while abstract

frame pointers are given names such as φ̂ and φ̂′.

The numeric values used by many programming languages are already finite because

of their limited bit width. However, even the modest 32-bit integer or floating point

value is frequently precise enough to make abstract interpretation intractable. Because

primitive values in many languages have literal representations in syntax, an abstract

interpreter generally requires an abstraction metafunction. This section will present

several possible abstraction metafunctions for integer values, each of which will have

a name of the form αx : INT32 → ÎNT32, where ÎNT32 differs from abstraction to

abstraction. Similar strategies can be used for other primitive data types.

One trivial abstraction for numeric values is to discard all precision; in other words,

to abstract all integers to >. > is an abstract value that represents any value; in this

case, it represents any integer. This is done with α> : INT32→ {>}, whose definition

is straightforward:
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α> (int32 ) = >

It is worth noting that the literature uses > inconsistently; some works use > for

an unspecified value and others use ⊥. These two values are not interchangeable; in

fact, they are each other’s opposite. However, lattices are defined such that each one

is defined and either one may be used for this purpose in an abstract interpretation as

long as that usage is consistent. Similarly, this work uses the lattice join operation t.

Works that use ⊥ where this work uses > use the meet operation u instead of t.

Another equally trivial abstraction is to discard no precision. While easy to

implement, this abstraction rarely allows abstract interpretation to terminate in

a reasonable amount of time. Were this “abstraction” to operate on Z, it would

produce an infinite set and would allow the interpreter to diverge. This is done with

αINT32 : INT32→ INT32.

αINT32 (int32 ) = int32

A much more common abstraction is the abstraction to a value’s sign. The

abstraction α+ : INT32→ P ({−, 0,+}) accomplishes this in three cases:

α+ (int32 ) =


{−} int32 < 0

{0} int32 = 0

{+} int32 > 0

Another abstraction is to use a predefined set I of values that are not to be

abstracted, while all other values are abstracted with a different strategy. In this

example, all values not in I are abstracted to >. αI : INT32→ I ∪ {>} is defined as

follows:

αI (int32 ) =

{
int32 int32 ∈ I

> int32 /∈ I

There is another abstraction which, in some cases, can be problematic. It uses a

counter c to determine if a predefined number of primitives has been allocated. If not,

it decrements the counter, adds the value to its set of values I that should not be

abstracted, and returns the value. Otherwise, it returns >. Another finite set, such as
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signs, could be used in this second case. αc : INT32 → INT32 ∪ {>} requires three

slightly more complicated cases. In the second, “adds” refers to a mutating set union.

αc (int32 ) =


int32 int32 ∈ I

dec (c) ; I adds int32 ; int32 c > 0

> c = 0

In some cases, stateful abstractions can contribute to nondeterminism in analysis

result. This is discussed in Section 7.2.

2.2.1.2 Abstract addresses

In general, abstract addresses are not treated in the same way as abstract primitive

values, despite the fact that many languages use 32-bit or 64-bit integer values to store

addresses. Also, addresses are not included in syntax but are runtime properties of

the interpreter. As such, there is no need to define abstractions for addresses. Instead,

addresses are generated with allocators, which act like abstracted versions of malloc.

Unlike malloc, whose range is effectively infinite, abstract allocators have much more

restricted ranges. At a minimum, small-step abstract interpretation requires allock ,

an allocator for continuation addresses. Any other allocation modeled in the language,

such as array or object instantiation, also requires an allocator. These allocation

strategies may be identical; indeed, they may all use the same metafunction alloc.

They may also be completely disparate. In this section, alloc may be used for any

type of allocation.

As with primitive value abstractions, several species of allocators may be used.

One trivial abstraction discards all precision: alloc> : Σ̂→ {>}

alloc> (ς̂) = >

It is possible to use an allocation strategy that uses the entire allocating state as

an address. However, states contain addresses. If addresses contain states, abstract

interpretation can diverge. So although alloc ς̂ : Σ̂→ Σ̂ is possible to define, it fails to

guarantee finiteness:

alloc ς̂ (ς̂) = ς̂
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A much more common allocation strategy is called 0CFA, which uses the currently

executing function as an address. alloc0CFA : Σ̂→ Method is defined as follows:

alloc0CFA (ς̂) = m, where ς̂ =
(

cp, φ̂, σ̂, κ̂, t̂s , ĉt
)

and cp = (ln,m)

0CFA is the least precise of the family of allocation strategies called k -CFA. The

more precise variants, like 1CFA and 2CFA, require states to contain additional

information. Specifically, they must contain information about the last function to be

called. Notably, there is some ambiguity, even in the original k -CFA paper: this can

be the last function to be called or the function that called the current function. A

1CFA allocator alloc1CFA : Σ̂→ Method×Method is defined:

alloc1CFA (ς̂) = (m,mc) , where ς̂ =
(

cp, φ̂, σ̂, κ̂, t̂s , ĉt ,mc

)
and cp = (ln,m)

Similar to 0CFA is the pointwise allocator, which uses the program location as an

address. alloccp : Σ̂→ CodePoint is simply:

alloccp (ς̂) = cp, where ς̂ =
(

cp, φ̂, σ̂, κ̂, t̂s , ĉt
)

As long as finiteness is preserved, arbitrary additional information may be added

to states in order to tune allocators [13].

Of note is pushdown control flow analysis, or PDCFA [9]. Instead of guaranteeing

a finite state space, PDCFA guarantees that a finite portion of its infinite state space

will be explored. PDCFA guarantees perfect stack precision; that is, that an abstract

interpreter will not return to a location that did not call the returning function.

PCDFA uses a different structure from the family of small-step abstract analyses

described here.

Recent work by Gilray et al. [14] showed that perfect stack precision may be

obtained with an allocator. Their allocation strategy is called pushdown control flow

analysis for free or P4F. P4F uses the fact that continuation addresses are only ever

created upon function invocation. It requires the program location and environment

of the state being created. Accordingly, allocP4F : CodePoint×FP → CodePoint×FP

is defined as follows:

allocP4F (cp ′, φ′) = (cp ′, φ′)
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Allocated components in an abstract interpreter may already be in use because

they come from finite sets. For example, the set of abstract frame pointers might

be defined as the set of program locations. New frame pointers are generated upon

function invocation, so new frame pointers could be generated with the code point

where the function is invoked. With this allocation strategy, recursive calls to the

same function would receive the same abstract frame pointer. This phenomenon is

called merging.

2.2.1.3 Abstract state exploration

Abstracting values leads to situations where the interpreter may follow multiple

paths; for example, a branch whose condition is > cannot prove that its condition is

exclusively true or false. In this case, the abstract interpreter follows both paths. The

self-contained nature of CESK states allows interpretation to proceed along both paths

independently by simply adding each successor to a queue. States may be enqueued

in any order. Since states may have multiple successors, an abstract CESK interpreter

does not produce a linear program trace, but instead produces a graph of abstract

states that model all possible executions from a given initial abstract state.

The abstract store is updated weakly; that is, new values are combined with

existing values. This is necessary because of merging in the address space; two (or

more) unrelated instructions that use two different concrete addresses may use the

same abstract address, so an update to one value must not interfere with the other.

Abstract values are defined on a lattice, so the lattice’s join operation t is used to

combine them; in many cases, this is simply set union. Weak updates guarantee

monotonicity, which contributes to the proof of termination.

As their name suggests, small-step abstract interpreters proceed in small steps.

Their semantics are derived from those of analogous small-step concrete interpreters.

Like their concrete analogues, abstract interpreters use production rules to specify

behavior for each instruction or syntactic form. The production rule for the Move

instruction in a small-step abstract interpreter is included in Figure 2.2. Section 3.2.4.2

contains abstract semantics for every instruction with taint tracking.

Abstraction makes it impossible for an interpreter to exhibit only those program

behaviors that can occur during concrete interpretation. This means that abstract
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I (cp) = Move(rd, rs)(
cp, φ̂, σ̂, κ̂

)
→
{(

next (cp) , φ̂, σ̂′, κ̂
)} , where

ŝad =
(
φ̂, rd

)
ŝas =

(
φ̂, rs

)
σ̂′ = σ̂[ŝad 7→ σ̂ (ŝad) t σ̂ (ŝas)]

Figure 2.2: Semantics for a move instruction in an abstract interpreter

interpreters are, in one sense, incorrect. We say that they do not have perfect

precision. They are, however, correct in another sense: they model all possible

behaviors in all corresponding concrete interpretations. This correctness property

is called soundness. Typically, soundness is proven via simulation (illustrated in

Figure 2.3). Simulation proofs show that abstract interpretation simulates concrete

interpretation by showing that the relationship between a concrete state ς and its

abstraction ς̂ holds for their respective successors.

An abstraction relation α ⊆ Σ × Σ̂ formalizes the relationship between ς and

its abstraction ς̂, as follows: α (ς, ς̂). The concrete and abstract succession relations

(→⊆ Σ× Σ and  ⊆ Σ̂× Σ̂, respectively) indicate that one state succeeds another:

→ (ς, ς ′) and  (ς̂ , ς̂ ′). With these relations, simulation can be defined: If ς ′ is the

concrete successor to ς , there must be some abstract successor ς̂ ′ to ς̂ such that α (ς ′, ς̂ ′).

Given some initial concrete state ς0 and an initial abstract state ς̂0 whose abstraction

includes ς0 and a proof of this inductive property, we can conclude that the abstract

state graph includes all possible behaviors that the concrete trace could exhibit.

ς0 . . . ς ς ′ . . .

ς̂0 . . . ς̂ ς̂ ′ . . .

→

α

→ →

α

→

α

    

Figure 2.3: An illustration of the simulation property
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More formally, the inductive property states that if → (ς, ς ′) and α (ς, ς̂) then

there exists an abstract state ς̂ ′ such that  (ς̂ , ς̂ ′) and α (ς ′, ς̂ ′).

2.2.1.4 Widening

Many abstract interpreters relax precision to improve performance by widening, or

allowing multiple states to share the same component. Small-step abstract interpreters

commonly widen their stores. When stores are widened, states no longer contain

stores. Instead, there is a way to find the appropriate store for a state. In global

widening, all states share the same store. In pointwise widening, all states at the same

program location share the same store.

Widening changes the fixed point state exploration slightly; states are only

considered previously visited if they have been visited more recently than their

respective store has been updated. Typically, timestamps are used to determine

whether or not a state has been visited since its store has been updated.

2.2.2 Postdominance

The concept of postdominance (sometimes spelled “post-dominance” in other

publications) is defined in a directed graph with a unique exit node. Directed graphs

may not have a unique exit node. This is illustrated in Figure 2.4, with exit nodes

depicted as squares. In this case, an exit node may safely be added as a successor to

each of the multiple exit nodes, as in Figure 2.5. As such, this work refers to directed

graphs and assumes without loss of generalization that a unique exit node exists. It

further assumes that the exit node is reachable from all nodes; while not true of graphs

in general, it is true of the graphs used in this work because of how the graphs are

generated. This assumption is somewhat analogous to the assumption that the entry

node dominates all other nodes in a control flow graph because the graph is generated

by reaching program locations after starting from the entry node.

Postdominance refers to the property that all paths from a postdominated node

to the unique exit node pass through all postdominating nodes. In Figure 2.6, G

postdominates A; in other words, every path from A to J passes through G , even

though there are infinitely many paths from A to J . Although there are infinitely

many such paths, each of them has finite length. The same is true of nodes B through
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Figure 2.4: A directed graph with no unique exit node

Figure 2.5: The graph from Figure 2.4 with a unique exit node
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F ; each is postdominated by G . All nodes except the exit node J are postdominated

by J . When examining a directed graph, postdominators look like constriction points

where paths converge, including the trivial case where a node is postdominated by its

unique child.

Dominance is the property that all paths from a unique entry node to a dominated

node pass through all dominating nodes. Inverting the graph, including turning the exit

node into an entry node, turns a postdominance problem into a dominance problem.

This isomorphism is particularly useful because the literature addresses dominance

much more frequently than postdominance. In accordance with this isomorphism,

this work references the literature about dominance as if it addressed postdominance

directly.

Every node except the exit node in a directed graph is postdominated by the exit

node. Nodes may also be postdominated by additional nodes. Each node has a unique

immediate postdominator, which is the postdominator that does not postdominate

any other of the node’s postdominators. Intuitively, an immediate postdominator P

of a node N is the first of the postdominators of N along a path from N to the exit

node.

The uniqueness of a node’s immediate postdominator is demonstrable by contra-

diction. Assume for contradiction that some node W has at least two immediate

postdominators X and Y . By the definition of immediate postdominator, neither

postdominates the other. It is already known that the exit node Z postdominates

all other nodes. This relationship is illustrated in Figure 2.7; solid arrows indicate

postdominance, while dashed arrows indicate the absence of a postdominance relation.

Because postdominance is transitive, an arrow between W and Z could be shown but

is omitted for clarity.

There must be some path from W to X that does not include Y because X does

not postdominate Y (but X does postdominate W ). Similarly, there must be some

path from X to Z that does not include Y because Y does not postdominate X . As

such, there must be a path from W through X to Z that does not include Y , which

contradicts the given that Y postdominates W .

Algorithms for the calculation of immediate dominators (and, therefore, immediate
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A

B C

D E F

G

H I

J

Figure 2.6: A directed graph

W

X Y

Z

Figure 2.7: Postdominance relationships in the proof by contradiction
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postdominators) exist in the literature; for example, the algorithm presented by

Lengauer and Tarjan [22].

2.2.3 Noninterference

Traditional taint tracking mechanisms apply a security type or label, also called

a taint, to sensitive values, such as a phone’s location or a user’s password. Whenever a

new value is written, it derives its security type from the values upon which it depends.

Denning demonstrated that security types may be lattices [7]. In practice, many

analyses use simple binary labels: the “high” label applies to values with sensitive

information and the “low” label applies to other values.

These techniques are effective for explicit information flows, in which values

propagate directly (e.g., via assignment). However, they fail to detect implicit

information flows, which depend on control flow to leak information. Figure 2.8 shows

a Java snippet that prints true when secret is true and false otherwise. This is

an implicit information leak because secret affects what is printed but is not copied

or used directly. switch statements, function calls, function returns, and exceptional

control flow can also change control flow. As such, these control flows can also change

values in ways not detectable by traditional taint tracking mechanisms.

In order to track implicit information flows, taints can also be applied to the

program’s context, per Denning and Denning [8]. Denning and Denning further claim

that a static analysis of postdominance in the control flow graph would allow context

tainting to apply to languages with arbitrary goto statements. In the case of Figure 2.8,

line 5 postdominates line 1, so the println call on line 6 is safe. However, Denning

and Denning do not prove noninterference. Furthermore, their analysis does not

include function calls or exceptional control flow.

Figure 2.9 contains a program that successfully leaks a bit without detection by

postdominance in the (interprocedural) control flow graph. It does so by creating a

situation where control returns from a function when a sensitive value is true. As a

result, control flow reaches line 11 regardless of the sensitive value but the level of

the stack reflects that value. As such, the value of secret is printed to the terminal

without detection by the proposed analysis.

Noninterference is a formalization used to demonstrate that information cannot
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1 if (secret) {

2 System.out.println("true");

3 } else {

4 System.out.println("false");

5 }

6 System.out.println("safe");

Figure 2.8: An implicit information leak

1 private boolean secret;

2

3 void printSecret(int frame) {

4 if (frame == 0) {

5 printSecret(1);

6 } else {

7 if (secret) {

8 return;

9 }

10 }

11 if (frame == 1) {

12 System.out.print("not ");

13 return;

14 }

15

16 System.out.println("true");

17 }

Figure 2.9: An information leak through the stack
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leak. More formally, noninterference is the property that if a program is executed

twice with different sensitive data but otherwise identical inputs, an attacker must

observe identical behaviors. Both of the Java snippets in this section do not preserve

noninterference; in both cases, the output to the terminal reflects the value of secret.

This work proves termination-insensitive noninterference, a weaker form of

noninterference that allows attackers to observe whether or not a program terminates,

even if some information can be inferred from the program’s convergence or divergence.

Termination analyses are well understood and are beyond the scope of this work.

In the spirit of termination-insensitive noninterference, exceptional control flow that

propagates to the top level is not included in the postdominance calculation. Since some

programs do not satisfy the requirement of noninterference, the proof of noninterference

is a proof that any interference that can occur will be identified.



CHAPTER 3

AUGMENTED-STATE INFORMATION

FLOW TRACKING

Small step abstract interpretation can be modified by the addition of components

to the state space. This has the advantage of coupling the operational semantics of the

language with the propagation of information flows, which results in a straightforward

presentation of a proof of noninterference.

Leaks such as the one demonstrated in Figure 2.9 depend on the stack to mask the

information flow. In order to address these leaks, the analysis proposed by Denning and

Denning can be modified to calculate postdominance the execution point graph,

which is similar to but richer than than the control flow graph. Nodes in an execution

point graph (called execution points) are pairs of a code point and a natural number,

which is the depth of the stack. An abstract execution point has either a natural

number or a value that represents an indeterminate stack height, which can occur in

any finite abstraction of a state space. Execution points without exact stack heights

are not considered postdominators, as they represent multiple concrete execution

points.

This work uses implicit taint values to defer computation about whether or not a

taint should propagate until after the execution point graph can be created. Section 3.1

explains in more detail why implicit taint values exist and how they are constructed.

Section 3.2 presents a language that summarizes the features of Dalvik bytecode,

gives semantics for the language, and describes the abstraction of this dynamic

analysis to a static analysis. Section 3.3 proves that this analysis demonstrates

termination-insensitive noninterference.
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3.1 Implicit taint values

Augmented-state information flow tracking requires special implicit taint values

distinct from typical taint values. Implicit taint values act as deferred taints. Once

the abstract interpretation is complete, the execution point graph can be consulted to

determine if they are valid. Valid taints are those that, in retrospect, should have

been propagated. In contrast, invalid taints are taints that can be safely removed.

Taint validity is formalized in Section 3.3.4. Implicit taint values are generated from

context and are formalized in Section 3.2.2.

Section 3.1.1 describes the structure of implicit taint values and Section 3.1.2

describes how implicit taint values are created from context taint.

3.1.1 Implicit taint value structure

In its simplest (but incomplete) form, an implicit taint value contains a location at

which a branch occurred, a subsequent location at which an assignment occurred, and

a taint value. If the postdominance calculation on the execution point graph shows

that the assignment occurs independently of the branch, the taint value is invalid

and can be removed. If, on the other hand, the branch influences whether or not the

assignment will execute, the implicit taint value is valid and remains. Optionally, a

valid implicit taint may be replaced with the taint value it contains.

However, a recursive structure is cumbersome and potentially infinite in size. This

recursion is manifest in the analysis of programs like the one in Figure 3.1. In this

example, execution points (formalized in Section 3.2.2) are constructed with the stack

height h. If some explicit taint value etv r exists on secret, then an implicit taint value

is created for x. Since the branch in question occurred at line 2 and the assignment in

question occurs on line 3, the implicit taint value is ((2, h) , (3, h) , etv r). The analysis

applies this implicit taint value to x.

Subsequently, the analysis branches at line 5 and then assigns at line 6. Since x

has a taint value, a new implicit taint value is created that includes it and applies it

to y. The nested implicit taint value is the following:(
(5, h) , (6, h) ,

(
(2, h) , (3, h) , etv r

))



20

1 boolean x = false;

2 if (secret) {

3 x = true;

4 }

5 boolean y = false;

6 if (x) {

7 y = true;

8 }

Figure 3.1: Chained implicit taint values

Both of these branch/assignment pairs are necessary for precision; if either

assignment occurs independently of its respective branch, the taint is invalid and may

be discarded. Their order, however, is unimportant, and duplicate values serve no

purpose. As such, the branch/assignment pairs are accumulated in a set and the set

is paired with a single explicit taint value. Instead of the recursive value given above,

the implicit taint value assigned to y is instead:

({((5, h) , (6, h)) , ((2, h) , (3, h))} , etv r)

With this finite structure, validity of an implicit taint value is ascertained by

determining whether each assignment executes conditionally upon its respective

branch.

3.1.2 Creation of implicit taint values

In order to create implicit taint values, it is necessary to know which branches

influence control flow to various parts of a program. Each state contains a context

taint map ct that shows which taint values were applied to values that affected control

flow at execution points. Context taint maps are formally defined in Section 3.2.2.

Since the execution point graph can only be created after abstract interpretation

is complete, it is unsafe to remove taints from context during abstract interpretation.

Accordingly, all updates to a context taint map are weak. Weak updates to the context

taint map guarantee that no context taint is removed during interpretation.

When the context taint map is nonempty, assignments create implicit taint values

from the context taint map and from the current state’s execution point. Every branch
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whose condition has taint applied to it creates a context taint that persists for the

duration of abstract interpretation. Many of these context taints, however, can be

removed in retrospect once the execution point graph has been constructed.

Formal details of context taint and implicit taint values are included in Section 3.2.3.

3.2 Language and semantics

3.2.1 Syntax

The abstract syntax for the summarized bytecode language is given in Figure 3.2.

See Section 5.1 for the differences between this language and Dalvik bytecode.

In conjunction with this syntax, following metafunctions are necessary:

• M : MName→ Method for method lookup

• I : CodePoint → Stmt for statement lookup

• next : CodePoint ⇀ CodePoint gives the syntactic successor to the current code

point

• H : CodePoint ⇀ CodePoint gives the target of the first exception handler

defined for a code point in the current function, if there is any.

• init : Method→ CodePoint gives the first code point in a method.

• jump : CodePoint × LineNumber⇀ CodePoint gives the code point in the same

method as the given code point and at the line number specified.

3.2.2 State space

A state ς ∈ Σ contains six members:

1. A code point cp.

2. A frame pointer φ. All registers in the machine are frame-local. Frame addresses

are represented as a pair consisting of a frame pointer and an index.

3. A store σ, which is a partial map from addresses to values.

4. A continuation κ.
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prgm ∈ Program = ClassDef∗

classdef ∈ ClassDef ::= Class className {field1, . . . , fieldn, m1, . . . , mm}
m ∈ Method ::= Def mName {handler 1, . . . ,handlern,

stmt1, . . . , stmtm}
handler ∈ Handler ::= Catch(ln, ln, ln)

stmt ∈ Stmt ::= ln Const(r, c)

| ln Move(r, r)

| ln Invoke(mName, r1, . . . , rn)

| ln Return(r)

| ln IfEqz(r, ln)

| ln Add(r, r, r)

| ln NewInstance(r, className)

| ln Throw(r)

| ln IGet(r, r, field)

| ln IPut(r, r, field)

r ∈ Register = {result, exception, 1, 2, . . .}
ln ∈ LineNumber is a set of line numbers

mName ∈ MName is a set of method names

field ∈ Field is a set of field names

cp ∈ CodePoint ::= (ln,m)

Figure 3.2: Abstract syntax



23

5. A taint store ts , which is a partial map from addresses to taint values. Explicit

taint values store the execution point at which they originated, while implicit

taint values also contain a set of pairs of execution points; the first execution

point of each pair indicates where a branch occurred and the other indicates

where an assignment happened. The taint store is updated in parallel with the

store. When the taint store is read at an undefined address, it returns the empty

set.

6. A context taint map ct , which is a map from execution points to taint values.

The execution points are where control-flow has branched before reaching the

current state. The taint values indicate the taints on the values that contributed

to the branching.

The concrete state space is formally defined in Figure 3.3.

3.2.3 Semantics

Section 3.2.3.1 defines metafunctions and shorthand notations used in the definition

of the formal semantics. Section 3.2.3.2 uses these notations to define the semantics

of the concrete interpreter.

3.2.3.1 Helpers for concrete semantics

These semantics require projection metafunctions. SH : Kont → Z calculates

stack height:

SH (κ) =

{
1 + SH (κ′) if κ = retk(cp, φ, ct , κ′)

0 if κ = halt

p : Σ→ EP uses SH to create execution points:

p (ς) =


ep (cp, z ) if ς = (cp, φ, σ, κ, ts , ct) and z = SH (κ)

endsummary if ς = endstate

errorsummary if ς = errorstate

In some cases, an implicit taint value may exist inside of the context taint map.

In this case, the set of branch/assignment pairs is extended to form a single implicit

taint value. Combining them ensures that the implicit taint value space is finite.
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ς ∈ Σ ::= (cp, φ, σ, κ, ts , ct) | errorstate | endstate

φ ∈ FP is an infinite set of frame pointers

σ ∈ Store = Addr → Value

val ∈ Value = INT32 + ObjectAddress

κ ∈ Kont ::= retk(cp, φ, ct , κ) | halt

ts ∈ TaintStore = Addr → P (TaintValue)

tv ∈ TaintValue = ExplicitTV + ImplicitTV

etv ∈ ExplicitTV = EP

itv ∈ ImplicitTV = P (EP × EP)× ExplicitTV

ct ∈ ContextTaint = EP → P (TaintValue)

ep ∈ EP ::= ep (cp, z ) | errorsummary | endsummary

z ∈ Z is the set of integers

a ∈ Addr ::= sa | fa | oa | null
sa ∈ StackAddress = FP × Register

fa ∈ FieldAddress = ObjectAddress × Field

oa ∈ ObjectAddress is an infinite set of addresses

Figure 3.3: Concrete state space
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Accordingly, new implicit taint values are created with the metafunction implicit :

EP × EP × TaintValue → ImplicitTV , which is defined in two cases:

implicit (epb, epa, tv) =

{
({(epb, epa)} , tv) if tv ∈ ExplicitTV

({(epb, epa)} ∪ B , etv i) if tv = (B , etv i) .

The concrete semantics for the language are defined by the relation (→) ⊆ Σ× Σ.

In its transition rules, the following shorthand is useful: epς is a state’s execution

point and itv ς is the set of implicit taint values generated at a state. For a state ς

with context taint map ct = [ep1 → {tv 1,1, . . . , tv 1,i} , . . . , epn → {tvn,1, . . . , tvn,j}],

epς = p (ς)

and

itv ς = {implicit (ep1, epς , tv 1,1) , . . . , implicit (ep1, epς , tv 1,i) , . . . ,

implicit (epn, epς , tvn,1) , . . . , implicit (epn, epς , tvn,j)} .

Updates to the context taint map are always weak. That is, values are only ever

added, leaving existing values in place. It becomes unwieldy to write updates of the

form

ct ′ = ct [ep → ct (ep) ∪ {tv}] .

Instead, this work abbreviates weak updates with the following shorthand, which is

equivalent to the long form above:

ct ′ = ct
[
ep

t7→ {tv}
]
.

It is also convenient to merge context taint maps together. Merging context

taint maps involves finding execution points mapped to taints in both maps and

combining the sets of taints. In the event that only one context taint map contains

a mapping for a given execution point, that mapping is preserved. For example, if

ct1 = [ep1 → {tv 1} , ep2 → {tv 2}] and ct2 = [ep1 → {tv 3}],

ct1 t ct2 = [ep1 → {tv 1, tv 3} , ep2 → {tv 2}] .
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3.2.3.2 Concrete semantics

The Const instruction writes a constant value to a register. Destination addresses

of a constant assignment cannot be tainted explicitly but may be tainted implicitly via

context. It proceeds to the next code point and leaves the frame pointer, continuation

stack, and context taint unchanged but updates the store so that the stack address sa

contains the constant c and the taint store so that it contains any relevant taint from

context.

I (cp) = Const(r, c)

(cp, φ, σ, κ, ts , ct)→ (next (cp) , φ, σ′, κ, ts ′, ct)
, where

sa = (φ, r)

σ′ = σ [sa 7→ c]

ts ′ = ts [sa 7→ itv ς ] .

The Move instruction simulates all of Dalvik bytecode’s move instructions. Taints

may propagate both explicitly from the source address and implicitly via context.

This instruction varies from the Const instruction only in that it copies the value

stored at sad instead of a constant.

I (cp) = Move(rd, rs)

(cp, φ, σ, κ, ts , ct)→ (next (cp) , φ, σ′, κ, ts ′, ct)
, where

sad = (φ, rd)

sas = (φ, rs)

σ′ = σ [sad 7→ σ (sas)]

ts ′ = ts [sad 7→ ts (sas) ∪ itv ς ] .

The Invoke instruction simulates Dalvik’s invoke instructions. See Section 5.1.3 for

a discussion of virtual method resolution, calling convention, etc. in Dalvik bytecode.

In Dalvik bytecode, the receiver of the method, if there is one, is in the first register.

In this summarized bytecode language, that first argument is r1. Although these

semantics do not show virtual dispatch, they do show context tainting as in the

presence of virtual dispatch. To do so, context taint is created from any taint values

at the stack address sas1 of the first argument and at the object address, if there is
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one, stored at sas1. The updates to the store copy the values of each argument to the

new frame pointer.

I (cp) = Invoke(mName, r1, . . . , rn)

(cp, φ, σ, κ, ts , ct)→ (cp ′, φ′, σ′, κ′, ts ′, ct ′)
, where

cp ′ = init (M (mName))

κ′ = retk(cp, φ, ct , κ)

φ′ = is a fresh frame pointer

for each i from 1 to n,

sadi = (φ′, i) and sasi = (φ, ri)

σ′ = σ [sad1 7→ σ (sas1) , . . . , sadn 7→ σ (sasn)]

ts ′ = ts [sad1 7→ ts (sas1) ∪ itv ς , . . . , sadn 7→ ts (sasn) ∪ itv ς ]

ct ′ = ct
[
epς

t7→ T
]

T = ts (sas1) ∪ ({σ (sas1)} ∩ObjectAddress) .

The Return instruction summarizes Dalvik’s return instructions. The Return

instruction introduces context taint if invocation occurred in a tainted context. In

this sense, it acts as a branch.

I (cp) = Return(r)

(cp, φ, σ, κ, ts , ct)→ (next (cp ′) , φ′, σ′, κ′, ts ′, ct ′)
, where

κ = retk(cp, φ′, ctk, κ
′)

sad = (φ′, result)

sas = (φ, r)

σ′ = σ [sad 7→ σ (sas)]

ts ′ = ts [sad 7→ ts (sas) ∪ itv ς ]

ct ′ = ct t ctk .

This second rule for the Return instruction finishes execution when the halt

continuation is invoked.
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I (cp) = Return(r)

(cp, φ, σ, κ, ts , ct)→ endstate
, where

κ = halt .

The IfEqz instruction jumps to the given target if its argument is 0 and continues

to the next instruction otherwise. Dalvik bytecode represents null as 0, so IfEqz

serves as a null check.

I (cp) = IfEqz(r, ln)

(cp, φ, σ, κ, ts , ct)→ (cp ′, φ, σ, κ, ts , ct ′)
, where

sas = (φ, r)

cp ′ =

{
jump (cp, ln) if σ (sas) = 0

next (cp) if σ (sas) 6= 0

ct ′ = ct
[
epς

t7→ ts (sas)
]
.

The Add instruction represents all arithmetic instructions. Since Java uses 32-bit

two’s complement integers, + represents 32-bit two’s complement addition.

I (cp) = Add(rd, rl, rr)

(cp, φ, σ, κ, ts , ct)→ (next (cp) , φ, σ′, κ, ts ′, ct)
, where

sad = (φ, rd)

sa l = (φ, rl)

sar = (φ, rr)

σ′ = σ [sad 7→ σ (sa l) + σ (sar)]

ts ′ = ts [sad 7→ ts (sa l) ∪ ts (sar) ∪ itv ς ] .

Object instantiation is done with the NewInstance instruction. Calls to construc-

tors are included explicitly in bytecode.
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I (cp) = NewInstance(r, className)

(cp, φ, σ, κ, ts , ct)→ (next (cp) , φ, σ′, κ, ts ′, ct)
, where

oa is a fresh object address

sa = (φ, r)

σ′ = σ [sa 7→ oa]

ts ′ = ts [sa 7→ itv ς ] .

The remaining instructions use an additional metafunction:

T : CodePoint × FP × ContextTaint ×Kont ⇀

CodePoint × FP × ContextTaint ×Kont .

T looks for an exception handler in the current function. If there is a handler, it

is returned. If not, searches through the code points in the continuation stack. The

accumulation of context taint simulates the accumulation that would happen through

successive Return instructions.

Formally,

T (cp, φ, ct , κ) =


(cph, φ, ct , κ) if H (cp) = cph
T (cpk, φk, ct t ctk, κk) if cp /∈ dom (H)

and κ = retk(cpk, φk, ctk, κk) .

The Throw instruction requires two cases. In this case, execution continues at the

appropriate error handler.

I (cp) = Throw(r)

(cp, φ, σ, κ, ts , ct)→ (cp ′, φ′, σ′, κ′, ts ′, ct ′′)
, where

sas = (φ, r)

sad = (φ′, exception)

(cp ′, φ′, ct ′′, κ′) = T (cp, φ, ct ′, κ)

σ′ = σ [sad 7→ σ (sas)]

ts ′ = ts [sad 7→ ts (sas) ∪ itv ς ]

ct ′ = ct
[
epς

t7→ ts (saa) ∪ ts (σ (saa))
]
.
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This second case for the Throw instruction reaches the error state when no

appropriate exception handler is found.

I (cp) = Throw(r)

(cp, φ, σ, κ, ts , ct)→ errorstate
, where

(cp, φ, ct , κ) /∈ dom (T ) .

The IGet instruction represents the family of instance accessor instructions in

Dalvik bytecode. It requires three transition rules. In the first, the object address is

nonnull:

I (cp) = IGet(rd, ro, field)

(cp, φ, σ, κ, ts , ct)→ (next (cp) , φ, σ′, κ, ts ′, ct ′)
, where

oa 6= null

sad = (φ, rd)

sao = (φ, ro)

oa = σ (sao)

fa = (oa, field)

σ′ = σ [sad 7→ σ (fa)]

ts ′ = ts [sad 7→ ts (saa) ∪ ts (oa) ∪ ts (fa) ∪ itv ς ]

ct ′ = ct
[
epς

t7→ ts (saa) ∪ ts (oa)
]
.

In the second case, the object address is null and the exception is handled. This

instruction implicitly generates an exception. It is useful to think of this instruction

as two instructions in one. The first instruction generates an exception and the second

throws it.
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I (cp) = IGet(rd, ro, field)

(cp, φ, σ, κ, ts , ct)→ (cp ′, φ′, σ′, κ′, ts ′, ct ′′)
, where

oa = null

(cp ′, φ′, ct ′′, κ′) = T (cp, φ, ct ′, κ)

sao = (φ, ro)

oa = σ (sao)

saex = (φ′, exception)

oaex is a fresh object address

σ′ = σ [saex 7→ oaex]

ts ′ = ts [saex 7→ ts (sao) ∪ ts (oa) ∪ itv ς ,

oaex 7→ ts (sao) ∪ ts (oa) ∪ itv ς ]

ct ′ = ct
[
epς

t7→ ts (saa) ∪ ts (oa)
]
.

In the last case, the exception reaches the top level:

I (cp) = IGet(rd, ro, field)

(cp, φ, σ, κ, ts , ct)→ errorstate
, where

oa = null

(cp, φ, ct , κ) /∈ dom (T )

sao = (φ, ro)

oa = σ (sao) .

The IPut instruction also represents a family of instructions; IPut stores values in

objects. Like IGet, IPut requires three transition rules. In this first rule, no exception

is thrown.
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I (cp) = IPut(rs, ro, field)

(cp, φ, σ, κ, ts , ct)→ (next (cp) , φ, σ′, κ, ts ′, ct)
, where

oa 6= null

sas = (φ, rs)

sao = (φ, ro)

oa = σ (sao)

fa = (oa, field)

σ′ = σ [fa 7→ σ (sas)]

ts ′ = ts [fa 7→ ts (sas) ∪ ts (sao) ∪ ts (oa) ∪ itv ς ]

ct ′ = ct
[
epς

t7→ ts (sao) ∪ ts (oa)
]
.

In this second case for IPut, an exception is thrown and then caught:

I (cp) = IPut(rd, ro, field)

(cp, φ, σ, κ, ts , ct)→ (cp ′, φ′, σ′, κ′, ts ′, ct ′′)
, where

oa = null

(cp ′, φ′, ct ′′, κ′) = T (cp, φ, ct ′, κ)

sao = (φ, ro)

oa = σ (sao)

saex = (φ′, exception)

oaex is a fresh object address

σ′ = σ [saex 7→ oaex]

ts ′ = ts [saex 7→ ts (sao) ∪ ts (oa) ∪ itv ς ,

oaex 7→ ts (sao) ∪ ts (oa) ∪ itv ς ]

ct ′ = ct
[
epς

t7→ ts (sao) ∪ ts (oa)
]
.

In this last case for IPut, an exception is thrown and is uncaught:
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I (cp) = IPut(rd, ro, field)

(cp, φ, σ, κ, ts , ct)→ errorstate
, where

oa = null

(cp ′, φ′, ct ′, κ′) /∈ dom (T )

sao = (φ, ro)

oa = σ (sao) .

3.2.4 Abstraction

A small-step analyzer as described by Van Horn and Might [35] overapproximates

program behavior. Abstraction of taint stores and context taint maps is straightforward:

they store execution points, which are code points and stack heights. Code points

need no abstraction and the height of abstract stacks is suitable. Any abstraction

of continuations (even that of PDCFA [9]) admits indeterminate stack heights; an

abstract execution point with an indeterminate stack height cannot be a postdominator.

Creating execution points with ŜH (defined in Section 3.2.4.1) ensures that the

generated state space is finite, even though Z is unbounded.

The abstract interpreter may use any allocators or abstractions for primitives, as

long as they are sound. As a result, any form of polyvariance can be employed during

abstract interpretation [13].

As in Van Horn and Might’s work, continuations are made finite by store allocation.

A continuation does not store its successor but an address at which its successor is

stored.

The formal definition of the abstract state space is given in Figure 3.4.

3.2.4.1 Helpers for abstract semantics

The abstract semantics also use the shorthand σ̂[â
t7→ v̂al ] for a weak update.

Formally,

σ̂[â
t7→ v̂al ] = σ̂[â 7→ σ̂ (â) t v̂al ] .

Each projection metafunction has an abstract counterpart. ŜH : K̂ont × Ŝtore ×

P
(

K̂ont
)
→ Ĥ calculates stack height. Whenever it encounters a loop in the abstract
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ς̂ ∈ Σ̂ ::=
(

cp, φ̂, σ̂, κ̂, t̂s , ĉt
)
| errorstate | endstate

φ̂ ∈ F̂P is a finite set of frame pointers

σ̂ ∈ Ŝtore = Âddr → V̂alue

v̂al ∈ V̂alue = Ẑ + P
(

̂ObjectAddress
)

+ P
(

K̂ont
)

ẑ ∈ Ẑ is a finite set of abstract integers

κ̂ ∈ K̂ont ::= r̂etk(cp, φ̂, ĉt , k̂a) | halt

t̂s ∈ ̂TaintStore = Âddr → P
(

̂TaintValue
)

t̂v ∈ ̂TaintValue = ̂ExplicitTV + ̂ImplicitTV

êtv ∈ ̂ExplicitTV = ÊP

îtv ∈ ̂ImplicitTV = P
(

ÊP × ÊP
)
× ̂ExplicitTV

ĉt ∈ ̂ContextTaint = ÊP → P
(

̂TaintValue
)

êp ∈ ÊP ::= êp
(

cp, ĥ
)
| errorsummary | endsummary

ĥ ∈ Ĥ = Z + {unknown}
z ∈ Z is the set of integers

â ∈ Âddr ::= ŝa | f̂a | ôa | k̂a | null

ŝa ∈ ̂StackAddress = F̂P × Register

f̂a ∈ ̂FieldAddress = ̂ObjectAddress × Field

ôa ∈ ̂ObjectAddress is a finite set of addresses

k̂a ∈ ̂KontAddress is a finite set of addresses

Figure 3.4: Abstract state space for the augmented-state analysis
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continuation stack, the stack height cannot be determined. The stack height is also

indeterminate in the case where different continuations at the same address along the

stack height have different depths.

ŜH (κ̂, σ̂, seen) =



unknown if κ̂ ∈ seen

0 if κ̂ = halt and κ̂ /∈ seen

1 + next if κ̂ = r̂etk(cp, φ̂, ĉt , k̂a) and κ̂ /∈ seen

and for every κ̂′ in σ̂
(

k̂a
)
,

ŜH (κ̂′, σ̂, seen + {κ̂}) = next

unknown otherwise .

p̂ : Σ̂→ ÊP uses ŜH to create execution points:

p̂ (ς̂) =


êp
(

cp, ĥ
)

if ς̂ =
(

cp, φ̂, σ̂, κ̂, t̂s , ĉt
)

and ĥ = ŜH (κ̂, σ̂, {})
endsummary if ς̂ = endstate

errorsummary if ς̂ = errorstate .

The abstract analogue of implicit is ̂implicit : ÊP × ÊP × ̂ExplicitTV , whose

definition is straightforward:

̂implicit
(
êpb, êpa, t̂v

)
=

{(
{(êpb, êpa)} , t̂v

)
if t̂v ∈ ̂ExplicitTV(

{(êpb, êpa)} ∪ B̂ , êtv i

)
if t̂v =

(
B̂ , êtv i

)
.

Each shorthand expression from the concrete semantics also has an abstract

equivalent. For an abstract state ς̂ with context taint map

ĉt =
[
êp1 →

{
t̂v 1,1, . . . t̂v 1,i

}
, . . . , êpn →

{
t̂vn,1, . . . , t̂vn,j

}]
,

êpς = p̂ (ς̂)

and

îtv ς =
{

̂implicit
(
êp1, êpς , t̂v 1,1

)
, . . . , ̂implicit

(
êp1, êpς , t̂v 1,i

)
, . . . ,

̂implicit
(
êpn, êpς , t̂vn,1

)
, . . . , ̂implicit

(
êpn, êpς , t̂vn,j

)}
.

Abstract context taint maps merge as expected. Given two abstract context taint

sets ĉt1 =
[
êp1 →

{
t̂v 1

}
, êp2 →

{
t̂v 2

}]
and ĉt2 =

[
êp1 →

{
t̂v 3

}]
,

ĉt1 t ĉt2 =
[
êp1 →

{
t̂v 1, t̂v 3

}
, êp2 →

{
t̂v 2

}]
.

It is also useful to define an abstraction metafunction for values αv : Value ⇀ V̂alue

takes a concrete value and returns its abstraction. The semantics of αv reflect the
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choice of abstractions and allocators used by the analysis. Using the abstraction of

signs mentioned in Section 3.2.4, αv would be defined over 32-bit two’s complement

integers as α+. Other abstractions might use a different abstraction for integers; αv is

a placeholder for whichever abstraction is chosen.

In practice, abstract addresses are generated during interpretation and not ab-

stracted from concrete addresses. The exception to this rule is null, which is equivalent

to the literal integer 0 [15] and is abstracted accordingly.

3.2.4.2 Abstract semantics

The semantics of the abstract interpreter use the relation ⊆ Σ̂× Σ̂. This relation

is defined case by case, with cases grouped by instruction.

In the case of the Const instruction, abstraction means using a weak update and

abstracting the concrete value stored in the instruction using the αv chosen for the

analysis.

I (cp) = Const(r, c)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

next (cp) , φ̂, σ̂′, κ̂, t̂s
′
, ĉt
) , where

ŝa =
(
φ̂, r
)

σ̂′ = σ̂
[
ŝa

t7→ αv (c)
]

t̂s
′
= t̂s

[
ŝa

t7→ îtv ς

]
.

Abstracting the Move instruction requires only that the concrete semantics be

modified to update weakly:

I (cp) = Move(rd, rs)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

next (cp) , φ̂, σ̂′, κ̂, t̂s
′
, ĉt
) , where

ŝad =
(
φ̂, rd

)
ŝas =

(
φ̂, rs

)
σ̂′ = σ̂

[
ŝad

t7→ σ̂ (ŝas)
]

t̂s
′
= t̂s

[
ŝad

t7→ t̂s (ŝas) ∪ îtv ς

]
.
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The Invoke instruction simulates Dalvik’s invoke instructions. For virtual methods,

dispatch may discover multiple objects in the store at the given address. In this case,

a successor is created for each method that could be dispatched.

I (cp) = Invoke(mName, r1, . . . , rn)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

cp ′, φ̂′, σ̂′, κ̂′, t̂s
′
, ĉt
′
) , where

cp ′ = init (M (mName))

κ̂′ = r̂etk(cp, φ̂, ĉt , κ̂)

φ̂′ = is a fresh frame pointer

for each i from 1 to n,

ŝadi =
(
φ̂′, i

)
and ŝasi =

(
φ̂, ri

)
σ̂′ = σ̂[ŝad1

t7→ σ̂ (ŝas1) , . . . , ŝadn
t7→ σ̂ (ŝasn)]

t̂s
′
= t̂s [ŝad1

t7→ t̂s (ŝas1) ∪ îtv ς , . . . , ŝadn
t7→ t̂s (ŝasn) ∪ îtv ς ]

ĉt
′
= ĉt

[
êpς

t7→ T̂
]

T̂ = t̂s (ŝas1) ∪

 ⋃
ôa∈ÔA

t̂s (ôa)


ÔA = σ̂ (ŝas1) ∩ ̂ObjectAddress .

An abstract continuation address may point to multiple continuations, so  is

defined for each such continuation when handling a Return instruction.

I (cp) = Return(r)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

next (cp ′) , φ̂′, σ̂′, κ̂′, t̂s
′
, ĉt
′
) , where

κ̂ = r̂etk(cp, φ̂′, ĉtk, k̂a)

κ̂′ ∈ σ̂
(

k̂a
)
∩ K̂ont

ŝad =
(
φ̂′, result

)
ŝas =

(
φ̂, r
)

σ̂′ = σ̂
[
ŝad

t7→ σ̂ (ŝas)
]

t̂s
′
= t̂s

[
ŝad

t7→ t̂s (ŝas) ∪ îtv ς

]
ĉt
′
= ĉt t ĉtk .
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This second case for the Return instruction halts at the end of the program:

I (cp) = Return(r)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 endstate

, where

κ̂ = halt .

The IfEqz instruction, like the Return instruction, can have multiple successors;

the two cases for cp ′ are not mutually exclusive.

I (cp) = IfEqz(r, ln)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

cp ′, φ̂, σ̂, κ̂, t̂s , ĉt
′
) , where

ŝas =
(
φ̂, r
)

cp ′ =

{
jump (cp, ln) if αv (0) v σ (ŝas)

next (cp) if there is an integer z such that z 6= 0 and αv (z ) v σ (ŝas)

ĉt
′
= ĉt

[
êpς

t7→ t̂s (ŝas)
]
.

The Add instruction represents all arithmetic instructions. The +̂ operation is the

abstraction of 32-bit two’s complement addition appropriate to the abstract domain

used for integers.

I (cp) = Add(rd, rl, rr)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

next (cp) , φ̂, σ̂′, κ̂, t̂s
′
, ĉt
) , where

ŝad =
(
φ̂, rd

)
ŝa l =

(
φ̂, rl

)
ŝar =

(
φ̂, rr

)
σ̂′ = σ̂

[
ŝad

t7→ σ̂ (ŝa l) +̂ σ̂ (ŝar)
]

t̂s
′
= t̂s [ŝad

t7→ t̂s (ŝa l) ∪ t̂s (ŝar) ∪ îtv ς ] .

Abstraction of the NewInstance instruction is straightforward:
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I (cp) = NewInstance(r, className)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

next (cp) , φ̂, σ̂′, κ̂, t̂s
′
, ĉt
) , where

ôa is a fresh object address

ŝa =
(
φ̂, r
)

σ̂′ = σ̂
[
ŝa

t7→ ôa
]

t̂s
′
= t̂s

[
ŝa

t7→ îtv ς

]
.

T has an abstract counterpart, T̂ :

T̂ : CodePoint × F̂P × Ŝtore × ̂ContextTaint × K̂ont →

P
(

CodePoint × F̂P × ̂ContextTaint × K̂ont
)

+ {error} .

Because of potential imprecision in the continuation stack, T̂ returns a set of

tuples instead of one tuple. The special value error is a member of the set whenever

an exception reaches the top level. Like T , T̂ is defined by cases. In the first case, a

handler is found:

If

H (cp) = cph

then

T̂
(

cp, φ̂, σ̂, ĉt , κ̂
)

=
{(

cph, φ̂, ĉt , κ̂
)}

.

In the second case, no handler is found at the current stack depth and it must recur.

Also, the current continuation is not halt. Because continuations are store-allocated,

the recursive step may consider multiple continuations. It merges the results of the

different calls by set union. Formally,

If

cp /∈ dom (H) , and

ĉtk = ∅, and

κ̂ = r̂etk(cpk, φ̂k, ĉtk, k̂a)
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then

T̂
(

cp, φ̂, σ̂, ĉt , κ̂
)

=
⋃
κ̂k∈K̂

T̂
(

cpk, φ̂k, ĉt t ĉtk, κ̂k

)
, where

K̂ = σ̂
(

k̂a
)
∩ K̂ont .

In all other cases (notably, when κ̂ = halt),

T̂
(

cp, φ̂, σ̂, ĉt , κ̂
)

= {error} .

As before, there are two cases for the Throw instruction. As with other abstract

production rules, the cases are not exclusive. Also, it is possible that T̂ will return

multiple tuples, each of which can be used to construct a successor state. This first

case demonstrates a caught exception:

I (cp) = Throw(r)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

cp ′, φ̂′, σ̂′, κ̂′, t̂s
′
, ĉt
′′
) , where

(
cp ′, φ̂′, ĉt

′′
, κ̂′
)
∈ T̂

(
cp, φ̂, σ̂, ĉt

′
, κ̂
)

ŝas =
(
φ̂, r
)

ŝad =
(
φ̂′, exception

)
ôa ∈ σ̂ (ŝas) ∩ ̂ObjectAddress

σ̂′ = σ̂
[
ŝad

t7→ ôa
]

t̂s
′
= t̂s

[
ŝad

t7→ t̂s (ŝas) ∪ îtv ς

]
ĉt
′
= ĉt

[
êpς

t7→ t̂s (ŝas) ∪ t̂s (ôa)
]
.

In the second case for the Throw instruction, no handler is found and the exception

reaches the top level:

I (cp) = Throw(r)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 errorstate

, where

error ∈ T̂
(

cp, φ̂, σ̂, ĉt , κ̂
)
.
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The IGet requires three nonexclusive transition rules. In the first, the object

address is nonnull, so no exception is thrown.

I (cp) = IGet(rd, ro, field)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

next (cp) , φ̂, σ̂′, κ̂, t̂s
′
, ĉt
′
) , where

∃ oa 6= null : αv (oa) v ôa

ŝad =
(
φ̂, rd

)
ŝao =

(
φ̂, ro

)
ôa ∈ σ̂ (ŝao) ∩ ̂ObjectAddress

fa = (ôa, field)

σ̂′ = σ̂
[
ŝad

t7→ σ̂
(

f̂a
)]

t̂s
′
= t̂s

[
ŝad

t7→ t̂s (ŝao) ∪ t̂s (ôa) ∪ t̂s
(

f̂a
)
∪ îtv ς

]
ĉt
′
= ĉt

[
êpς

t7→ t̂s (ŝao) ∪ t̂s (ôa)
]
.

In this second case for the IGet instruction, an exception is thrown and caught:

I (cp) = IGet(rd, ro, field)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

cp ′, φ̂′, σ̂′, κ̂′, t̂s
′
, ĉt
′′
) , where

null v ôa(
cp ′, φ̂′, ĉt

′′
, κ̂′
)
∈ T̂

(
cp, φ̂, σ̂, ĉt

′
, κ̂
)

ŝao =
(
φ̂, ro

)
ôa ∈ σ̂ (ŝao)

ŝaex =
(
φ̂′, exception

)
ôaex is a fresh object address

σ̂′ = σ̂
[
ŝaex

t7→ ôaex

]
t̂s
′
= t̂s

[
ŝaex

t7→ t̂s (ŝao) ∪ t̂s (ôa) ∪ îtv ς ,

ôaex
t7→ t̂s (ŝao) ∪ t̂s (ôa) ∪ îtv ς

]
ĉt
′
= ĉt

[
êpς

t7→ t̂s (ŝao) ∪ t̂s (ôa)
]
.
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In the final case for the IGet instruction, an exception is thrown and reaches the

top level:

I (cp) = IGet(rd, ro, field)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 errorstate

, where

null v ôa

error ∈ T̂
(

cp, φ̂, σ̂, ĉt , κ̂
)

ŝao =
(
φ̂, ro

)
ôa ∈ σ̂ (ŝao) .

Like IGet, IPut requires three transition rules. The first case shows execution

without any exception:

I (cp) = IPut(rs, ro, field)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

next (cp) , φ̂, σ̂′, κ̂, t̂s
′
, ĉt
′
) , where

∃oa 6= null : αv (oa) v ôa

ŝas =
(
φ̂, rs

)
ŝao =

(
φ̂, ro

)
ôa ∈ σ̂ (ŝao)

f̂a = (ôa, field)

σ̂′ = σ̂
[
f̂a
t7→ σ̂ (ŝas)

]
t̂s
′
= t̂s

[
f̂a
t7→ t̂s (ŝas) ∪ t̂s (ŝao) ∪ t̂s (ôa) ∪ îtv ς

]
ĉt
′
= ĉt

[
êpς

t7→ t̂s (ŝao) ∪ t̂s (ôa)
]
.

The second case for IPut shows a caught exception:
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I (cp) = IPut(rd, ro, field)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 
(

cp ′, φ̂′, σ̂′, κ̂′, t̂s
′
, ĉt
′′
) , where

null v ôa(
cp ′, φ̂′, ĉt

′′
, κ̂′
)
∈ T̂

(
cp, φ̂, σ̂, ĉt

′
, κ̂
)

ŝao =
(
φ̂, ro

)
ôa ∈ σ̂ (ŝao)

ŝaex =
(
φ̂′, exception

)
ôaex is a fresh object address

σ̂′ = σ̂
[
ŝaex

t7→ ôaex

]
t̂s
′
= t̂s

[
ŝaex

t7→ t̂s (ŝao) ∪ t̂s (ôa) ∪ îtv ς ,

ôaex
t7→ t̂s (ŝao) ∪ t̂s (ôa) ∪ îtv ς

]
ĉt
′
= ĉt

[
êpς

t7→ t̂s (ŝao) ∪ t̂s (ôa)
]
.

The final case for IPut shows an uncaught exception:

I (cp) = IPut(rd, ro, field)(
cp, φ̂, σ̂, κ̂, t̂s , ĉt

)
 errorstate

, where

null v ôa

error ∈ T̂
(

cp, φ̂, σ̂, ĉt , κ̂
)

ŝao =
(
φ̂, ro

)
ôa ∈ σ̂ (ŝao) .

3.3 Noninterference

The proof of noninterference operates on the concrete semantics, which are soundly

overapproximated by the abstract semantics. The proof that any unsafe behavior

will be identified in the concrete means that the abstract overapproximation is also

guaranteed to identify all unsafe behaviors.
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3.3.1 Influence

The influence of an execution point ep0 is the set of execution points that lie

along some path from ep0 to its immediate postdominator epn where epn appears

only at the end of the path. The function ipd : EP ⇀ EP is useful for notation; in

this example, ipd (ep0) = epn.

Given the set V of vertices in the execution point graph and the set E of edges in

that same graph, the set P of all paths from ep0 to epn can be defined:

P =
{
〈ep0, . . . , epn〉 | ∀i ∈ {0, . . . , n − 1} ,

(
epi, epi+1

)
∈ E ∧ epi 6= epn

}
.

With P defined, the influence of ep0 (when ipd (ep0) = epn) can be defined as:

influence (ep0) = {ep ∈ V | ∃p ∈ P : ep ∈ p} − {ep0, epn} .

3.3.2 Program traces

A program trace π is a sequence 〈ς1, ς2, . . . , ςn〉 of concrete states such that

ς1 → ς2 → . . .→ ςn and ςn /∈ dom (→) .

3.3.3 Observable behaviors

Which program behaviors are observable depends on the attack model and is a

decision to be made by the user of this analysis. This proof considers the general

case: Every program behavior is observable. A more realistic model would be that

invocations of certain functions are observable. Accordingly, obs, which must be a

(not necessarily proper) subset of Σ, is defined obs = Σ.

3.3.4 Valid taints

The given semantics has no notion of taint removal; instead, some taints are valid

and the others are disregarded. Explicit taints are always valid. Implicit taints are

created when some assignment is made. An implicit taint is valid if and only if its

assignment happens during the influence of its branch. Accordingly, the set of all

valid taints is:

valid = ExplicitTV ∪ valid i, where

valid i =
{

(B , etv i) ∈ ImplicitTV | ∀ (epb, epa) ∈ B , epa ∈ influence (epb)
}
.
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3.3.5 Labeled behaviors

A state ς has a labeled behavior if and only if it reads values at one or more

addresses with valid taint or if it occurs at a state with valid context taint. The

functions inputs : Σ → Addr ∗ and labeled : Σ → P (TaintValue) are defined so that

inputs identifies the addresses read by ς’s instruction and labeled identifies the valid

taints at those addresses. The use of itv ς reflects context taint. The formal definition

of inputs requires several cases:

I (cp) = Const(r, c) ⇒ inputs (ς) = 〈〉

I (cp) = Move(rd, rs) ⇒ inputs (ς) = 〈(φ, rs)〉

I (cp) = Invoke(mName, r1, . . . , rn) ⇒ inputs (ς) = 〈(φ, r1) , . . . , (φ, rn)〉

I (cp) = Return(r) ⇒ inputs (ς) = 〈(φ, r)〉

I (cp) = IfEqz(r, ln) ⇒ inputs (ς) = 〈(φ, r)〉

I (cp) = Add(rd, rl, rr) ⇒ inputs (ς) = 〈(φ, rl) , (φ, rr)〉

I (cp) = NewInstance(r, className) ⇒ inputs (ς) = 〈〉

I (cp) = Throw(r) ⇒ inputs (ς) = 〈(φ, r)〉

I (cp) = IGet(rd, ro, field) ⇒ inputs (ς) = 〈(φ, ro) , σ ((φ, ro)) ,

σ (σ ((φ, ro)) , field)〉

I (cp) = IPut(rs, ro, field) ⇒ inputs (ς) = 〈(φ, rs)〉

The formal definition of labeled follows:

labeled (ς) =
{

tv ∈ TaintValue | ∃ a ∈ inputs (ς) ∪ itv ς : tv ∈ ts (a)
}
∩ valid .

3.3.6 Similar stores

Two stores are similar with respect to two frame pointers, two continuations, and

two taint stores if and only if they differ only at reachable addresses that are tainted

in their respective taint stores. This definition requires some related definitions, which

follow.

Two stores are similar with respect to two addresses and two taint stores if and

only if:
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• Both stores are undefined at their respective address (Equation 3.1), or

• either store is tainted at its respective address (Equation 3.2), or

• the stores map their respective addresses to the same value (Equation 3.3), or

• the stores map respective addresses to structurally identical objects (Equa-

tion 3.4).

Formally,

(σ1, a1, ts1) ≈a (σ2, a2, ts2)

⇔(
a1 /∈ dom (σ1) ∧ a2 /∈ dom (σ2)

)
∨ (3.1)(

∃ tv ∈ ts1 (a1) : tv ∈ valid ∨ ∃ tv ∈ ts2 (a2) : tv ∈ valid
)
∨ (3.2)

σ1 (a1) = σ2 (a2) ∨ (3.3)(
σ1 (a1) = oa1 ∧ σ2 (a2) = oa2 ∧ (3.4)

∀ field ∈ Field, (σ1, (oa1, field) , ts1) ≈a (σ2, (oa2, field) , ts2)
)
.

With this definition, it is possible to define similarity with respect to frame pointers.

Two stores are similar with respect to two frame pointers and two taint stores if and

only if they are similar with respect to every address containing the respective frame

pointers.

Formally,

(σ1, φ1, ts1) ≈φ (σ2, φ2, ts2)⇔ ∀r ∈ Register, (σ1, (φ1, r) , ts1) ≈a (σ2, (φ2, r) , ts2) .

Two stores are similar with respect to two frame pointers, two continuations, and

two taint stores if and only if:

• The stores are similar with respect to the given pair of frame pointers (Equa-

tion 3.5), and

• they are recursively similar with respect to the given continuations (Equation 3.6).
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Formally,

(σ1, φ1, κ1, ts1) ≈σ (σ2, φ2, κ2, ts2)

⇔

(σ1, φ1, ts1) ≈φ (σ2, φ2, ts2)∧ (3.5)(
κ1 = κ2 = halt ∨ (3.6)

κ1 = retk(cp1, φ
′
1, ct ′1, κ

′
1) ∧ κ2 = retk(cp2, φ

′
2, ct ′2, κ

′
2) ∧

(σ1, φ
′
1, κ
′
1, ts1) ≈σ (σ2, φ

′
2, κ
′
2, ts2)

)
.

3.3.7 Similar states

Two states are similar if and only if their execution points are identical and their

stores are similar with respect to their frame pointers and continuations.

Formally, if ς1 = (cp1, φ1, σ1, κ1, ts1, ct1) and ς2 = (cp2, φ2, σ2, κ2, ts2, ct2), then

ς1 ≈ς ς2 ⇔ p (ς1) = p (ς2) ∧ (σ1, φ1, κ1, ts1) ≈σ (σ2, φ2, κ2, ts2) .

3.3.8 Similar traces

Any two traces, which we call π = 〈ς1, ς2, . . . , ςn〉 and π′ = 〈ς ′1, ς ′2, . . . , ς ′m〉 without

loss of generality, are similar if and only if their observable behaviors are identical

except for those marked as tainted. The formulation of trace similarity uses a partial

function dual : π ⇀ π′. Trace similarity is equivalent to the existence of a function

dual such that:

• dual is injective (Equation 3.7), and

• dual maps each state in π to a similar state in π′ if such a state exists

(Equation 3.8), and

• all states in π not paired by dual occur in a tainted context (Equation 3.9), and

• all states in π′ not paired by dual occur in a tainted context (Equation 3.10),

and

• the pairs of similar states occur in the same order in their respective traces

(Equation 3.11).



48

Formally,

π ≈π π′ ⇔ ∃ dual :

∀ i , j ∈ 1 . . . n, i 6= j ⇒ dual (i) 6= dual (j )∧ (3.7)

ςi ∈ dom (dual)⇒ ςi ≈ς dual (ςi)∧ (3.8)

ςi /∈ dom (dual)⇒ itv ς ∈ valid ∧ (3.9)

ς ′j /∈ range (dual)⇒ itv ς ∈ valid ∧ (3.10)

∀ i , j ∈ 1 . . . n : dual (ςi) = ς ′k ∧ dual (ςj) = ς ′l , (3.11)

i < j ⇒ k < l ∧ i = j ⇒ k = l ∧ i > j ⇒ k > l .

3.3.9 Transitivity of similarity

3.3.9.1 Lemma

If two states ς and ς ′ are similar, they have the same execution point ep0. Without

loss of generalization, the immediate postdominator of ep0 in the execution point

graph is eppd. The first successor of each state whose execution point is eppd is similar

to the other successor.

Formally, if

• ς is similar to ς ′ (Equation 3.12), and

• each adjacent pair of states in the sequence 〈ς, ς1, . . . , ςn〉 is a predecessor and a

successor (Equation 3.13), and

• each adjacent pair of states in the sequence 〈ς ′, ς ′1, . . . , ς ′m〉 is a predecessor and

a successor (Equation 3.14), and

• the respective execution points of ς and ς ′ are both ep0 (Equation 3.15), and

• the respective execution points of ςn and ς ′m are both eppd (Equation 3.16), and

• eppd is the immediate postdominator of ep0 (Equation 3.17), and

• no intermediate state’s execution point is eppd (Equation 3.18),
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then ςn is similar to ς ′m (Equation 3.19).

ς ≈ς ς ′ ∧ (3.12)

ς → ς1 → . . .→ ςn ∧ (3.13)

ς ′ → ς ′1 → . . .→ ς ′m ∧ (3.14)

p (ς) = p (ς ′) = ep0 ∧ (3.15)

p (ςn) = p (ς ′m) = eppd ∧ (3.16)

ipd (ep0) = eppd ∧ (3.17)

∀ ςi ∈ {ς1, . . . , ςn−1} ∪
{
ς ′1, . . . , ς

′
m−1
}
, p (ςi) 6= eppd (3.18)

⇒ ςn ≈ς ς ′m (3.19)

3.3.9.2 Proof

Without loss of generality,

ς = (cp, φ, σ, κ, ts , ct) and ς ′ = (cp ′, φ′, σ′, κ′, ts ′, ct ′) and

ςn = (cpn, φn, σn, κn, tsn, ctn) and ς ′m = (cpm, φm, σm, κm, tsm, ctm) .

ς1, . . . , ςn−1 and ς ′1, . . . , ς
′
m−1 are intermediate states.

It is given that p (ςn) = p (ς ′m). All that remains is to prove that

(σn, φn, κn, tsn) ≈σ (σm, φm, κm, tsm) .

By the definitions of influence and of valid and by induction on the instructions

in the language, all changes to the store between ς and ςn and between ς ′ and ς ′m are

marked as tainted. Crucially, this includes changes to heap values as well as to stack

values. The following four cases cover all possible additions to the stores:

• Addresses added to σ in some intermediate state (Equation 3.20),

• addresses added to σ′ in some intermediate state (Equation 3.21),

• addresses changed in σ in some intermediate state (Equation 3.22), and

• addresses changed in σ′ in some intermediate state (Equation 3.22).
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∀ a ∈ Addr ,

a /∈ dom (σ) ∧ a ∈ dom (σn) ⇒ tsn (a) ∩ valid 6= ∅ (3.20)

a /∈ dom (σ′) ∧ a ∈ dom (σm) ⇒ tsm (a) ∩ valid 6= ∅ (3.21)

σ (a) 6= σn (a) ⇒ tsn (a) ∩ valid 6= ∅ (3.22)

σ′ (a) 6= σm (a) ⇒ tsm (a) ∩ valid 6= ∅ (3.23)

The only changes that can occur to the continuation stack in any circumstance

are removal of stack frames (Return, Throw, IGet, and IPut instructions) and the

addition of new stack frames (Invoke instructions).

Since Invoke uses only fresh stack frames, all stack addresses with frames created

in intermediate states (FP f ) are undefined in σ and σ′:

∀ r ∈ Register, φf ∈ FP f , (φf , r) /∈ dom (σ) ∪ dom (σ′) .

This, together with the fact that all updates to heap values are tainted, proves

that σn and σm are similar with respect to any pair of frame pointers if one of those

is in FP f :

φn ∈ FP f ∨ φm ∈ FP f ⇒ (σn, φn, tsn) ≈φ (σm, φm, tsm)

Because p (ς) = p (ς ′), the stack heights in ς and ς ′ are equal. Because of the

restrictions of stack operations, φn is either φ, a fresh stack frame, or some stack frame

from within κ. Similarly, φm is either φ′, a fresh stack frame, or some stack frame

from within κ′. If φn is not fresh, it is identical to some suffix of κ. Crucially, this

means that no reordering of existing frame pointers is possible. The same relationship

holds between φm and κ′. As such, φn and φm are either φ and φ′, some pair from

continuations at the same height from halt, or at least one of them is fresh. The

same is true of each pair of frame pointers at identical height in κn and κm. In all

of these cases, the two stores must be similar with respect to the frame pointers and

their taint stores. Accordingly,

(σn, φn, κn, tsn) ≈σ (σm, φm, κm, tsm) .
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3.3.10 Global transitivity of similarity

3.3.10.1 Lemma

Any two finite program traces that begin with similar states are similar.

Formally, if π = 〈ς1, . . . , ςn〉 and π′ = 〈ς ′1, . . . , ς ′m〉, then ς1 ≈ς ς ′1 ⇒ π ≈π π′ .

3.3.10.2 Proof

By induction on transitivity of similarity.

3.3.11 Labeled interference in similar states

3.3.11.1 Lemma

Any two similar states exhibit the same behavior or at least one of them exhibits

behavior that is labeled as insecure.

ς1 ≈ς ς2 ⇒ labeled (ς1) 6= ∅ ∨ labeled (ς2) 6= ∅ ∨

∀i ∈ 〈1, . . . n〉, (σ1, ai, ts1) ≈a (σ2, a
′
i, ts2) , where

inputs (ς1) = 〈a1, . . . , an〉 and inputs (ς2) = 〈a′1, . . . , a′n〉 and

ς1 = (cp1, φ1, σ1, κ1, ts1, ct1) and ς2 = (cp2, φ2, σ2, κ2, ts2, ct2) .

3.3.11.2 Proof

By the definition of similarity, the contents of both states’ stores are identical at

reachable, untainted addresses. Thus, one of the calls labeled must return an address

or the calls to inputs must match.

3.3.12 Concrete termination-insensitive labeled interference

Any traces that begin with similar states exhibit the same observable behaviors

except for those labeled as insecure.

Formally, if π = 〈ς1, ς2, . . . , ςn〉 and π′ = 〈ς ′1, ς ′2, . . . , ς ′m〉 and ς1 ≈ς ς ′1, then

∀ ςi ∈ π, ςi /∈ obs ∨ labeled (ςi) 6= ∅ ∨ ∃ ς ′j ∈ π′ : ςi ≈ς ς ′j .

Because the choice of traces is arbitrary, this proof considers π′ as well as π.
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3.3.12.1 Proof

By global transitivity of similarity, π and π′ are similar. Every state in π or π′,

then, is similar to a state in the other trace or has a valid context taint. By the

definition of labeled , states with valid context taints report those behaviors.

By the definition of similarity, similar states in similar traces occur in the same

order.

3.3.13 Abstract noninterference

3.3.13.1 Lemma

Abstract interpretation with the given semantics detects all possible variances in

externally visible behaviors.

3.3.13.2 Proof

Since the abstract semantics are a sound overapproximation of the concrete

semantics, they capture the behavior of all possible executions. Since concrete

executions are proven to label all termination-insensitive interference, the absence of

labels reported by abstract interpretation proves noninterference.



CHAPTER 4

A POSTERIORI INFORMATION FLOW

TRACKING

The additional state components in the augmented-state analysis add considerable

asymptotic complexity to abstract interpretation. Both implicit taint values and the

context taint map are exponential in size in the worst case. It is possible to remove

these additional components from abstract states and to perform taint tracking as a

separate analysis after abstract interpretation. Performing taint tracking after abstract

interpretation makes implicit taint values unnecessary, which removes an exponential

term from the asymptotic complexity of the analysis. This section describes a posteriori

information flow tracking with augmented-state information flow tracking as its basis.

4.1 Abstract state space

In order to separate taint propagation from abstract interpretation, it is necessary

to change the abstract state space. There is motivation for this in the literature;

PDCFA [9] separates its continuation stack from the rest of the state in order to use a

different guarantee of finiteness for continuations than for the rest of the program. In

this case, taint tracking components are separated from abstract states in order to

perform the taint tracking strictly after abstract interpretation.

An augmented state is a tuple of the following form:

ς̂ ∈ Σ̂ ::=
(

cp, φ̂, σ̂, κ̂, t̂s , ĉt
)
.

Restructuring this tuple preserves all of its information:

ς̂p ∈ Σ̂p ::=
(

cp, φ̂, σ̂, κ̂
)

ς̂t ∈ Σ̂t ::=
(
ς̂p, t̂s , ĉt

)
.
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In this restructured state space, Σ̂p is the set of states in the small-step abstract

interpreter and Σ̂t is the set of states in the a posteriori taint analysis. The full

abstract state space for the small-step abstract interpreter is detailed in Figure 4.1

and the state space for the a posteriori taint tracking analysis is detailed in Figure 4.2.

4.2 Abstract interpretation semantics

Although the a posteriori abstract state space has no additional state components,

it does track the addresses read and written at each state. This preserves generality

in the presence of nondeterministic allocators, as Might and Manolios [28] showed to

be possible. In this case, it is impossible to calculate in retrospect which addresses

were used by a particular state.

The abstract interpreter tracks reads and writes in a data structure external to

the state space. Any widening scheme may be used. Mapping from addresses written

to the addresses whose value influenced the write allows for the special value of ∅ to

indicate that a write occurred. This simplifies the propagation of implicit taints. A

rule of the form writes ′ = writes
[
âd

t7→ {âs}
]

indicates that the map writes associated

with the state in question is updated to indicate that âs influenced âd. This data

structure records the information necessary to perform taint propagation at a later

time. As such, it is appropriate to think of it as storing deferred taints.

Although it is not incorporated into these simplified semantics, it is also useful to

record writes that result from a call to a source.

Besides this bookkeeping, the semantics of the a posteriori abstract interpreter are

identical to those of the augmented state abstract interpreter with the abstract taint

store and abstract context taint map removed.

The Const instruction writes to an abstract stack address but reads from the

instruction, not from memory:
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ς̂p ∈ Σ̂p ::=
(

cp, φ̂, σ̂, κ̂
)
| errorstate | endstate

φ̂ ∈ F̂P is a finite set of frame pointers

σ̂ ∈ Ŝtore = Âddr → V̂alue

v̂al ∈ V̂alue = Ẑ + P
(

̂ObjectAddress
)

+ P
(

K̂ont
)

ẑ ∈ Ẑ is a finite set of abstract integers

κ̂ ∈ K̂ont ::= r̂etkp(cp, φ̂, k̂a) | halt

â ∈ Âddr ::= ŝa | f̂a | ôa | k̂a | null

ŝa ∈ ̂StackAddress = F̂P × Register

f̂a ∈ ̂FieldAddress = ̂ObjectAddress × Field

ôa ∈ ̂ObjectAddress is a finite set of addresses

k̂a ∈ ̂KontAddress is a finite set of addresses

Figure 4.1: Abstract state space for the a posteriori analysis

ς̂t ∈ Σ̂t ::=
(
ς̂p, t̂s , ĉt

)
t̂s ∈ ̂TaintStore = Âddr → P

(
̂TaintValue

)
t̂v p ∈ ̂TaintValuep = ÊP

ĉt ∈ ̂ContextTaint = ÊP → P
(

̂TaintValuep

)
êp ∈ ÊP ::= êp

(
cp, ĥ

)
| errorsummary | endsummary

ĥ ∈ Ĥ = Z + {unknown}
z ∈ Z is the set of integers

Figure 4.2: State space for a posteriori taint tracking
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I (cp) = Const(r, c)(
cp, φ̂, σ̂, κ̂

)
 
(

next (cp) , φ̂, σ̂′, κ̂
) , where

ŝa =
(
φ̂, r
)

σ̂′ = σ̂
[
ŝa

t7→ αv (c)
]

writes ′ = writes
[
ŝad

t7→ ∅
]
.

The Move instruction reads one address and writes one address:

I (cp) = Move(rd, rs)(
cp, φ̂, σ̂, κ̂

)
 
(

next (cp) , φ̂, σ̂′, κ̂
) , where

ŝad =
(
φ̂, rd

)
ŝas =

(
φ̂, rs

)
σ̂′ = σ̂

[
ŝad

t7→ σ̂ (ŝas)
]

writes ′ = writes
[
ŝad

t7→ {ŝas}
]
.

The Invoke instruction performs several writes. Because writes update weakly,

the order in which they occur makes no difference. Context taint is deferred entirely

to the information flow tracking stage.

I (cp) = Invoke(mName, r1, . . . , rn)(
cp, φ̂, σ̂, κ̂

)
 
(

cp ′, φ̂′, σ̂′, κ̂′
) , where

cp ′ = init (M (mName))

κ̂′ = r̂etkp(cp, φ̂, κ̂)

φ̂′ = is a fresh frame pointer

for each i from 1 to n,

ŝadi =
(
φ̂′, i

)
and ŝasi =

(
φ̂, ri

)
σ̂′ = σ̂

[
ŝad1

t7→ σ̂ (ŝas1) , . . . , ŝadn
t7→ σ̂ (ŝasn)

]
writes ′ = writes

[
ŝad1

t7→ {ŝas1} , . . . , ŝadn
t7→ {ŝasn}

]
.
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The Return instruction writes to just one address:

I (cp) = Return(r)(
cp, φ̂, σ̂, κ̂

)
 
(

next (cp ′) , φ̂′, σ̂′, κ̂′
) , where

κ̂ = r̂etkp(cp, φ̂′, k̂a)

κ̂′ ∈ σ̂
(

k̂a
)
∩ K̂ont

ŝad =
(
φ̂′, result

)
ŝas =

(
φ̂, r
)

σ̂′ = σ̂
[
ŝad

t7→ σ̂ (ŝas)
]

writes ′ = writes
[
ŝad

t7→ {ŝas}
]
.

This second case for the Return instruction does not write at all:

I (cp) = Return(r)(
cp, φ̂, σ̂, κ̂

)
 endstate

, where

κ̂ = halt .

The IfEqz instruction does not write to the store, so its semantics are particularly

straightforward. As before, the two cases are not mutually exclusive.

I (cp) = IfEqz(r, ln)(
cp, φ̂, σ̂, κ̂

)
 
(

cp ′, φ̂, σ̂, κ̂
) , where

ŝas =
(
φ̂, r
)

cp ′ =

{
jump (cp, ln) if αv (0) v σ (ŝas)

next (cp) if there is an integer z such that z 6= 0 and αv (z ) v σ (ŝas) .

The Add instruction reads from two addresses and writes to one:
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I (cp) = Add(rd, rl, rr)(
cp, φ̂, σ̂, κ̂

)
 
(

next (cp) , φ̂, σ̂′, κ̂
) , where

ŝad =
(
φ̂, rd

)
ŝa l =

(
φ̂, rl

)
ŝar =

(
φ̂, rr

)
σ̂′ = σ̂

[
ŝad

t7→ σ̂ (ŝa l) +̂ σ̂ (ŝar)
]

writes ′ = writes
[
ŝad

t7→ {ŝa l, ŝar}
]
.

Abstraction of the NewInstance instruction is straightforward:

I (cp) = NewInstance(r, className)(
cp, φ̂, σ̂, κ̂

)
 
(

next (cp) , φ̂, σ̂′, κ̂
) , where

ôa is a fresh object address

ŝa =
(
φ̂, r
)

σ̂′ = σ̂
[
ŝa

t7→ ôa
]

writes ′ = writes
[
ŝad

t7→ {ôa}
]
.

T̂ can be simplified, although it is possible to use the same metafunction with an

empty context taint map.

T̂p : CodePoint × F̂P × Ŝtore × K̂ont →

P
(

CodePoint × F̂P × K̂ont
)

+ {error}

As with T̂ , T̂p returns a set of tuples instead of one tuple and may also return the

special value error .

If

H (cp) = cph

then

T̂p
(

cp, φ̂, σ̂, κ̂
)

=
{(

cph, φ̂, κ̂
)}

.

The second case of T̂p shows handled exceptions:
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If

cp /∈ dom (H) , and

κ̂ = r̂etkp(cpk, φ̂k, k̂a)

then

T̂p
(

cp, φ̂, σ̂, κ̂
)

=
⋃
κ̂k∈K̂

T̂p
(

cpk, φ̂k, κ̂k

)
, where

K̂ = σ̂
(

k̂a
)
∩ K̂ont .

In all other cases (notably, when κ̂ = halt),

T̂p
(

cp, φ̂, σ̂, κ̂
)

= {error} .

There are two nonexclusive cases for the Throw instruction. The first case

demonstrates a caught exception:

I (cp) = Throw(r)(
cp, φ̂, σ̂, κ̂

)
 
(

cp ′, φ̂′, σ̂′, κ̂′
) , where

(
cp ′, φ̂′, κ̂′

)
∈ T̂p

(
cp, φ̂, σ̂, κ̂

)
ŝas =

(
φ̂, r
)

ŝad =
(
φ̂′, exception

)
ôa ∈ σ̂ (ŝas) ∩ ̂ObjectAddress

σ̂′ = σ̂
[
ŝad

t7→ ôa
]

writes ′ = writes
[
ŝad

t7→ {ŝas, ôa}
]
.

In this second case for the Throw instruction, no handler is found and the exception

reaches the top level:

I (cp) = Throw(r)(
cp, φ̂, σ̂, κ̂

)
 errorstate

, where

error ∈ T̂p
(

cp, φ̂, σ̂, κ̂
)
.
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The IGet requires three nonexclusive transition rules. In the first, the abstract

frame address, abstract object address, and abstract field address are all read:

I (cp) = IGet(rd, ro, field)(
cp, φ̂, σ̂, κ̂

)
 
(

next (cp) , φ̂, σ̂′, κ̂
) , where

∃ oa 6= null : αv (oa) v ôa

ŝad =
(
φ̂, rd

)
ŝao =

(
φ̂, ro

)
ôa ∈ σ̂ (ŝao) ∩ ̂ObjectAddress

fa = (ôa, field)

σ̂′ = σ̂
[
ŝad

t7→ σ̂
(

f̂a
)]

writes ′ = writes
[
ŝad

t7→
{

ŝao, ôa, f̂a
}]

.

In this second case for the IGet instruction, an exception is thrown and caught:

I (cp) = IGet(rd, ro, field)(
cp, φ̂, σ̂, κ̂

)
 
(

cp ′, φ̂′, σ̂′, κ̂′
) , where

null v ôa(
cp ′, φ̂′, κ̂′

)
∈ T̂p

(
cp, φ̂, σ̂, κ̂

)
ŝao =

(
φ̂, ro

)
ôa ∈ σ̂ (ŝao)

ŝaex =
(
φ̂′, exception

)
ôaex is a fresh object address

σ̂′ = σ̂
[
ŝaex

t7→ ôaex

]
writes ′ = writes

[
ŝaex

t7→ {ŝao, ôa} , ôaex
t7→ {ŝao, ôa}

]
.

In the final case for the IGet instruction, an exception is thrown and reaches the

top level. No writes are performed.
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I (cp) = IGet(rd, ro, field)(
cp, φ̂, σ̂, κ̂

)
 errorstate

, where

null v ôa

error ∈ T̂p
(

cp, φ̂, σ̂, κ̂
)

ŝao =
(
φ̂, ro

)
ôa ∈ σ̂ (ŝao) .

Like IGet, IPut requires three transition rules. The first case shows execution

without any exception:

I (cp) = IPut(rs, ro, field)(
cp, φ̂, σ̂, κ̂

)
 
(

next (cp) , φ̂, σ̂′, κ̂
) , where

∃ oa 6= null : αv (oa) v ôa

ŝas =
(
φ̂, rs

)
ŝao =

(
φ̂, ro

)
ôa ∈ σ̂ (ŝao)

f̂a = (ôa, field)

σ̂′ = σ̂
[
f̂a
t7→ σ̂ (ŝas)

]
writes ′ = writes

[
f̂a
t7→ {ŝao, ôa, ŝas}

]
.

The second case for IPut shows a caught exception:
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I (cp) = IPut(rd, ro, field)(
cp, φ̂, σ̂, κ̂

)
 
(

cp ′, φ̂′, σ̂′, κ̂′
) , where

null v ôa(
cp ′, φ̂′, κ̂′

)
∈ T̂p

(
cp, φ̂, σ̂, κ̂

)
ŝao =

(
φ̂, ro

)
ôa ∈ σ̂ (ŝao)

ŝaex =
(
φ̂′, exception

)
ôaex is a fresh object address

σ̂′ = σ̂
[
ŝaex

t7→ ôaex

]
writes ′ = writes

[
ŝaex

t7→ {ŝao, ôa} , ôaex
t7→ {ŝao, ôa}

]
.

The final case for IPut shows an uncaught exception:

I (cp) = IPut(rd, ro, field)(
cp, φ̂, σ̂, κ̂

)
 errorstate

, where

null v ôa

error ∈ T̂p
(

cp, φ̂, σ̂, κ̂
)

ŝao =
(
φ̂, ro

)
ôa ∈ σ̂ (ŝao) .

4.3 Information flow tracking

Information flow tracking over a completed small-step abstract interpretation state

graph is the process of performing all of the deferred writes recorded in the abstract

interpretation phase along with context taints.

The state graph, together with the annotations about addresses that are read and

written at each state, contain enough information to reconstruct all of the program’s

behaviors. As such, it is possible to construct the same information flows a posteriori

as in the augmented-state model except that some spurious context taints do not

occur. This is equivalent to constructing only the valid information flows in the

augmented-state model.
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Because this a posteriori taint propagation occurs after abstract interpretation

has terminated, it has access to the entire state graph (and, therefore, the entire

execution point graph). With the execution point graph, the taint tracking analysis

can prune context taints at each step of the analysis, preventing spurious context

taints from propagating. At each step, pruning occurs by removing any invalid implicit

taint values. EPG (êp) is the set of abstract execution points that succeed êp in the

execution point graph.

Using some widening scheme, a taint store is associated with each state (any

widening scheme can be used). A rule such as t̂s
′
= t̂s

[
â
t7→
{

t̂v
}]

indicates that the

abstract taint store t̂s for the state in question is updated to t̂s
′
. t̂s

′
is not stored in

place but is stored at each successor state to the state in question. If a taint store is

already there, the two states merge with t. Timestamps are updated accordingly.

Abstract taint stores merge with the t operator. It merges the taint sets at each

address in the domain of either abstract taint store. Formally,

t̂s1 t t̂s2 = t̂s ,

where

t̂s (â) =


t̂s1 (â) when â ∈ dom

(
t̂s1

)
and â /∈ dom

(
t̂s2

)
t̂s2 (â) when â /∈ dom

(
t̂s1

)
and â ∈ dom

(
t̂s2

)
t̂s1 (â) ∪ t̂s2 (â) when â ∈ dom

(
t̂s1

)
and â ∈ dom

(
t̂s2

)
.

Similarly, there is a single, global map CTs from abstract execution points to

context taint values, which are themselves maps from abstract execution points to

taint values. This is equivalent to an execution-pointwise widening of context taint

maps. A rule such as CTs ′ = CTs
[
êpc

t7→
(
êpb,

{
t̂v
})]

indicates that the context

taint map CTs is updated so that the context taint map at êpc now maps êpb to t̂v

in addition to any values it mapped to previously. In other words, states at êpc now

see a context taint from a branch at êpb due to t̂v .

Pruning occurs before these updates happen; êpc is outside the influence of êpb, no

update happens. Pruning before writing ensures that the context taint map is mono-

tonic and always contains only valid context taints. Formally, CTs
[
êpc

t7→
(
êpb,

{
t̂v
})]

is equivalent to

CTs
[
êpc

t7→ CTs (êpc)
[
êpb

t7→
{

t̂v
}]]
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when êpc ∈ influence (êpb) and equivalent to CTs otherwise.

Taint propagation would be totally uniform across states except that it is necessary

to calculate which context taints are introduced at a state. For most instructions, no

context taints are introduced. However, the IfEqz, Throw, Return, IGet, and IPut

instructions can introduce context taints. In the presence of virtual dispatch, the

Invoke instruction may also introduce context taint.

Taint propagation rules will use much of the same shorthand as abstract interpre-

tation production rules. Tc refers to all taints from context at the state’s execution

point. Formally, when ÊP ς = dom (CTs (êpς)),

Tc =
⋃

êp∈ÊPς

CTs (êpς) (êp) .

Each rule operates over an abstract state ς̂ =
(

cp, φ̂, σ̂, κ̂
)

.

As with the semantics of the abstract interpretation, the appropriate map writes

exists for each state. dom (writes) gives the set of addresses at which writes is defined.

For convenience, the shorthand Tw indicates the combined taints at each address in

writes at a particular address. An abstract address â, an abstract taint store t̂s , and

a writes map writes all exist in context.

Tw =
⋃

âs∈writes(â)

t̂s (âs)

When a state’s instruction is Const, all that is necessary is to add taint values to

the taint store for each abstract execution point in the abstract context taint map

(that is, Tc). In fact, the taint propagation rules for all instructions that do not

introduce context taint are identical. Formally, when
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I (cp) = Const(r, c) or

I (cp) = Move(rd, rs) or

I (cp) = Invoke(mName, r1, . . . , rn) or

I (cp) = Add(rd, rl, rr) or

I (cp) = NewInstance(r, className),

for every address â in dom (writes) ,

t̂s
′
= t̂s

[
â
t7→ Tw ∪ Tc

]
.

When an instruction can add context taint, an additional step is required. It

occurs after propagation in the taint store. Whenever an instruction has only one

successor (e.g., when a branch’s condition is always true), no execution points are in

its influence and the context taint is pruned. In the case of the IfEqz instruction,

context taint can be introduced via ŝa. In the abstract interpretation semantics for

IfEqz, t̂s is never updated because dom (writes) = ∅ (assuming the widening schemes

are sufficiently precise). Formally, when

I (cp) = IfEqz(r, ln),

for every address â in dom (writes) ,

t̂s
′
= t̂s

[
â
t7→ Tw ∪ Tc

]
and

CTs ′ = CTs
[
êp ′1

t7→
(
êpς , t̂s (ŝas)

)
, . . . , êp ′n

t7→
(
êpς , t̂s (ŝas)

)]
, where

ŝa =
(
φ̂, r
)

{
êp ′1, . . . , êp ′n

}
= EPG (êpς) .

A different rule can be used for Invoke instructions when virtual dispatch is

possible. When
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I (cp) = Invoke(mName, r1, . . . , rn),

for every address â in dom (writes) ,

t̂s
′
= t̂s

[
â
t7→ Tw ∪ Tc

]
and

CTs ′ = CTs
[
êp ′1

t7→ (êpς ,T ) , . . . , êp ′n
t7→ (êpς ,T )

]
, where

ŝa1 =
(
φ̂, r1

)
T =

⋃
â∈A

t̂s (â)

A =
(
σ̂ (ŝa1) ∩ ̂ObjectAddress

)
∪ {ŝa1}{

êp ′1, . . . , êp ′n
}

= EPG (êpς) .

The Return instruction cannot directly add taint to CTs but when control returns

to a tainted context, CTs will still contain the context taint that existed. When

I (cp) = Return(r) and κ̂ = r̂etkp(cp, φ̂′, k̂a),

for every address â in dom (writes) ,

t̂s
′
= t̂s

[
â
t7→ Tw ∪ Tc

]
.

Another version of T̂ is useful for the remaining three instructions. T̂t : CodePoint×

F̂P × Ŝtore × K̂ont × P
(

ÊP
)
→ ∅ is stateful; it updates CTs and then sometimes

recurs. It returns nothing. It uses the shorthand êpT = êp
(

cp, ŜH (κ̂, σ̂, {})
)

to refer

to the execution point at the current level of stack inspection. The update to CTs is

exactly as it appears; it merges context taint from êpt into context taint for êpT .

When

H (cp) = cph

then

T̂t
(

cp, φ̂, σ̂, κ̂, ÊP t

)
=

for every êpt ∈ ÊP t, CTs ′ = CTs
[
êpT

t7→ CTs (êpt) ∪ Tex

]
;

∅ .
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The second case of T̂t moves up one level in the stack:

If

cp /∈ dom (H) , and

κ̂ = r̂etkp(cpk, φ̂k, k̂a),

then for every κ̂k in the set K̂ of succeeding continuations σ̂
(

k̂a
)
∩ K̂ont ,

T̂t
(

cp, φ̂, σ̂, κ̂, ÊP t

)
= T̂t

(
cpk, φ̂k, κ̂k, ÊP t ∪ {êpT }

)
.

In all other cases, an error would be reached and no context taint propagation is

necessary.

T̂p
(

cp, φ̂, σ̂, κ̂
)

= ∅

With T̂t defined, taint propagation rules for the remaining three instructions can

be defined with a single rule. This rule uses elements of ς̂ =
(

cp, φ̂, σ̂, κ̂
)

. When

I (cp) = Throw(r) and ŝa =
(
φ̂, r
)
, or

I (cp) = IGet(rd, ro, field) and ŝa =
(
φ̂, ro

)
, or

I (cp) = IPut(rs, ro, field) and ŝa =
(
φ̂, ro

)
,

for every address â in dom (writes) ,

t̂s
′
= t̂s

[
â
t7→ Tw ∪ Tc

]

and for every êp ′ that succeeds êpς in EPG

and every ôa in σ̂ (ŝa) ∩ ̂ObjectAddress ,

CTs ′ = CTs
[
êp ′

t7→
(
êpς , t̂s (ŝa) ∪ t̂s (ôa)

)]

T̂t
(

cp, φ̂, σ̂, κ̂, ∅
)
.

Taint propagation can occur over the state space in any order. Of the obvious

choices, the depth-first ordering appears to be fastest. Iterations over this sequence

proceed until no changes are made either to the taint store or to the map of context

taints, where each execution point has a unique context taint.
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4.4 Equivalence to augmented-state analysis

The a posteriori analysis tracks the same information flows as does the augmented-

state analysis. This equivalence is most easily demonstrated with an intermediate

analysis that performs the augmented-state analysis as if the execution point graph

were already available. This prescient augmented-state analysis is referred to as

the valid-only analysis. The two equivalent analyses must have the same widening

scheme; in particular, the context taint maps in the augmented-state analysis and in

the valid-only analysis must be execution-pointwise widened to match the widening of

the a posteriori analysis.

4.4.1 Transitivity of taint invalidity

4.4.1.1 Lemma

No taint value derived from an invalid taint, including context taints at locations

outside of the influence of their respective execution points, is valid.

4.4.1.2 Proof

This proof is presented by cases.

4.4.1.2.1 Explicit taint values. This lemma is vacuously true in the case of

explicit taint values, which are always valid.

4.4.1.2.2 Copying of implicit taint values. An invalid implicit taint value

may be copied from one address to another. Validity is defined independently of the

address at which the taint is stored, so every copy of an invalid taint is still invalid.

4.4.1.2.3 Derivation of implicit taint values. It is also possible to create a

new implicit taint value from an existing implicit taint value with ̂implicit , as follows:

̂implicit
(

êpb, êpa, îtv
)

= îtv
′
. By the definition of valid , if îtv is not valid, a pair of

abstract execution points (êpbt, êpat) must exist in îtv such that êpat /∈ influence (êpbt).

By the definition of ̂implicit , îtv
′

contains (êpbt, êpat) and so is also invalid.

4.4.1.2.4 Implicit values from context taints. An abstract implicit taint

value may be created from a context taint via ̂implicit . When the abstract execution

point êp at which the abstract implicit taint value is created is outside of the influence

of the abstract execution point êpb of the context taint, the resulting abstract implicit

taint value îtv contains (êpb, êp). Because êp /∈ influence (êpb), îtv is not valid.
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4.4.2 Equivalence of CESK state space

4.4.2.1 Lemma

The CESK state graph produced by projecting the augmented-state graph onto a

CESK state space is identical to the state graph produced by the state graph produced

by the first phase of the a posteriori analysis. This CESK state graph is also equivalent

to the graph produced by projecting the state graph from the valid-only state graph

onto a CESK state space.

4.4.2.2 Proof

By induction on the structure of the summarized Dalvik bytecode language

semantics, the semantics of the augmented-state analysis are identical to those of the a

posteriori analysis except for taint propagation and bookkeeping. Since no CESK value

ever depends on a taint value in any form or on the external bookkeeping performed

by the a posteriori analysis, the differences between these graphs are discarded in the

projection onto the CESK state space. The augmented-state analysis and valid-only

analysis differ only in components that are discarded during projection to the CESK

state space.

4.4.3 Equivalence of augmented-state analysis to valid-only analysis

4.4.3.1 Theorem

The valid information flows identified by the augmented-state analysis are identical

to the information flows identified by the valid-only analysis.

4.4.3.2 Proof

The difference between the augmented-state analysis and the valid-only analysis

is that the former propagates and then removes taints once they are shown to be

invalid. As such, the taints in the valid-only analysis are a subset of the taints in the

augmented-state analysis before removal.

Lemma 4.4.1 shows that if a taint value or context taint is invalid, every taint

value that results from it is also invalid. Since the only taints that can differ between

the two analyses are taints in the augmented-state analysis that are invalid and since

all invalid taints are subsequently removed, the two analyses identify exactly the same

information flows.
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This remains true if the augmented-state analysis sees more states than the

valid-only analysis; the additional states can only differ by additional, invalid, taints.

Crucially, there are no differences in the CESK components of these additional states;

Lemma 4.4.2 holds.

4.4.4 Equivalence of taint propagation

4.4.4.1 Lemma

For each state ς̂ in the CESK state graph, the same taints propagate in the

valid-only states that project to ς̂ as do in the a posteriori analysis when propagating

from the aggregate of the valid-only states’ taint stores and context taint if the two

analyses allocate the same addresses.

Formally, the set Σ̂V = {ς̂1, . . . , ς̂n} of states in the valid-only analysis contains all

states from the state space of this analysis that project to ς̂ . Their respective abstract

taint stores are TS and the aggregation of their respective taint stores is

t̂st =
⊔

t̂si∈TS

t̂s i .

Their respective context taint maps are CT and the aggregation of CT is

ĉtt =
⊔

ĉti∈CT

ĉt i .

The set Σ̂′V = {ς̂ ′1, . . . , ς̂ ′m} is the set of successors to the states in Σ̂V . The

aggregation t̂s
′
t is defined analogously.

Context taint maps are aggregated analogously at each successor’s execution point.

For each abstract execution point êpi that succeeds the execution point êpp at ς̂, an

abstract context taint map ĉt i is the aggregate of the abstract context taint maps of

states at this abstract execution point.

Assuming (without loss of generalization) that the two analyses allocate addresses

identically, performing a posteriori taint propagation on ς̂ with taint store t̂st and

with the context taint map ĉtt at êpp, results in a taint store t̂s
′
t and the results in a

context taint map ĉt i at each abstract execution point.

4.4.4.2 Proof

This lemma claims equivalence when the allocations are identical. The analyses

are executed in isolation; usually, only the a posteriori analysis executes. In essence,
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this agnosticism towards allocation strategies creates an entire class of analyses; this

proof considers matched pairs of analyses from the valid-only class of analyses and

the a posteriori family of analyses and proves each pair’s equivalence. This assertion

does not lessen generality.

In the augmented-state and valid-only semantics, every taint propagation within

the taint store copies taints from one address onto another. In the a posteriori

semantics, these same addresses are stored in the writes map and are then propagated

via Tw. Similarly, taints added to context in the valid-only semantics are added to

context in the taint propagation phase of the a posteriori analysis. Taints from context

in the valid-only analysis propagate in the a posteriori analysis via Tc.

The abstract taint store that results from taint propagation in the a posteriori

analysis is t̂sp. Every taint in t̂s
′
t either exists in t̂st or propagated via the semantics

of the augmented-state analysis. If it exists in t̂st, it must exist in t̂sp. If it does

not, then it either propagates via writes and Tw (reading from t̂st) or is created

from context (reading from ĉtt). By induction on the respective semantics, these

propagations are identical, so t̂sp must be equivalent to t̂st.

Similarly, taints added to context originate from t̂st and identical propagation

rules in the respective semantics, so the abstract context taint map at each execution

point êpi must be ĉt i.

4.4.5 Equivalence of a posteriori analysis to valid-only analysis

4.4.5.1 Theorem

The information flows identified by the a posteriori analysis are identical to the

information flows identified by the valid-only analysis.

4.4.5.2 Proof

By Lemma 4.4.2, both analyses see the same sources, so every taint that originates

in one analysis also originates in the other.

Also by Lemma 4.4.2, every state seen in the a posteriori taint tracking phase

is identical to the projection onto the CESK state space of at least one state in the

valid-only analysis. Similarly, every state in the valid-only analysis has an analogue

in the a posteriori taint tracking phase. Because both proceed to a fixed point, both
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calculate a transitive closure, which is agnostic to the order of propagation. By

induction on Lemma 4.4.4, the same taints must propagate at each of these states.

4.4.6 Equivalence of information flows

4.4.6.1 Theorem

The information flows identified by the a posteriori analysis are identical to the

information flows identified by the augmented-state analysis.

4.4.6.2 Proof

By Theorem 4.4.3 and Theorem 4.4.5.

4.5 Complexity

The asymptotic complexity of a small-step abstract interpreter is measured by the

complexity of its state space. Because the a posteriori analysis has no need of special

values for implicit taints, its state space is smaller than that of the augmented-state

analysis. Since implicit taint values contain a set of pairs of execution points, the

removal of implicit taint values from the state space removes two exponential terms

from the state space: one from the taint store and one from the context taint map.

In addition, the state space of the abstract interpreter in the a posteriori analysis

is much smaller than that of the augmented-state analysis, so the calculation of the

execution point graph (quadratic in the size of the state graph) is less complex. In

addition, the removal of spurious context taints could have a similar effect on runtime

as does abstract garbage collection [29]; by removing spurious flows, it may improve

performance in a way not predicted by asymptotic complexity.



CHAPTER 5

IMPLEMENTATION

Correctly implementing an analysis for Dalvik bytecode requires attention to

minute details. Making this analysis fast and precise requires other modifications.

This section describes some of the salient details of the abstract interpreter and taint

tracking mechanism.

5.1 Scaling up to full Dalvik bytecode

Although the abstract syntax and its accompanying semantics are for a summarized

representation of Dalvik bytecode, the abstract interpreter operates on Dalvik bytecode.

In order to adapt this analysis to full Dalvik bytecode, it is necessary to recognize the

aspects of Dalvik that the abstract syntax does not represent.

5.1.1 Data types

The syntax and semantics represent only integers and objects. Dalvik bytecode

has floats, doubles, longs, ints, booleans, bytes, shorts, objects (including String

objects, which get some special treatment), and arrays. In the Dalvik semantics, only

the first four are true primitives; the other integral types are stored in int registers.

The interpreter takes advantage of the fact that there is no implicit type conversion in

Dalvik bytecode and stores data of disparate types separately; updating the abstract

store with an integer value has no effect on any float registers that may be stored

there. It is possible that an attacker could manipulate bytecode after compilation to

take advantage of this optimization. Arrays require an address system similar to that

of objects.
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5.1.2 Instructions

There are thirteen variants of the Move instruction. Some of them contain type

information; for example, MoveObject moves a reference (either an object or an array)

from one register to another. Others specify the bit width of the information being

moved; MoveWide moves a pair of registers to another pair of registers and is suitable

for moving longs and doubles.

Line numbers are not part of the Dalvik bytecode specification; the bytecode uses

offsets into code. In conformance with the parser from the Tapas [17] project, which

performs the Dalvik bytecode parsing, the abstract interpreter uses line numbers

as opposed to labels. Code points in the interpreter for full Dalvik bytecode are

represented as pairs of a line number and an encoded method. Additionally, there are

special singleton objects for the end position, which is reached upon invocation of the

halt continuation, and an error position.

Similar straightforward generalizations exist for other instructions.

5.1.3 Methods

Dalvik bytecode differentiates between methods and “encoded methods.” Invo-

cation instructions have a method ID, which is an index into an array of methods.

Each method has a prototype, a name, and a class ID used to identify the class that

defines the method. Each encoded method includes a method id, flags such as private

or final, and an offset into the code table. From that offset, it is possible to ascertain

the instructions, register count, and exception handling information for a method.

Arguments, including the receiver, if there is one, are placed at the end of the

invocation frame in order and registers are zero-indexed. For example, a method

with a register count of six that takes two (single-register) arguments and a receiver

expects the receiver to be in virtual register 3 and the two arguments to be in virtual

registers 4 and 5. Registers 0, 1, and 2 are general-purpose registers.

Virtual method dispatch requires the type of the receiver. If the class data item

(indexed with an ID from the class definition item) has an encoded method whose ID

matches the method ID in the invocation instruction, that encoded method is used. If

not, the superclass (whose ID is stored in the class definition) is examined and the

process repeated until a matching method is found.
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Methods in Dalvik bytecode can take up to 256 arguments. There are five kinds of

invocations: direct, static, interface, virtual, and super. Direct methods are methods

such as private methods that cannot be overridden and require no type lookups.

Additionally, each kind of invocation has two instructions: a standard invocation that

uses between zero and five registers for its arguments and a range instruction that

specifies a range of consecutive registers as its arguments.

5.1.4 Exceptions

The provided semantics represent exception handling in Dalvik bytecode faithfully

except that they omit exception types. Checking handlers’ types against thrown

exceptions is straightforward.

5.1.5 Concurrency

The abstract interpreter’s computational model is not concurrent. As such, it

treats monitor instructions as no-ops.

5.2 Modularity

The abstract interpreter is flexible by design. Many of the design choices available

to the designers of small-step abstract interpreters have been implemented and may

be selected with command-line parameters. For example, it has built-in support for

global store widening, in which all states share a common store. It also supports

pointwise widening, in which all states at any particular code point share a common

store. Naturally, it also supports no store widening, in which each state has a store.

Other widening schemes can be implemented with a subclass of Widener and used by

adding a command line pattern to the appropriate argument in the Settings class.

There is also considerable flexibility in the allocators for frame pointers, arrays,

objects, and continuation addresses and in the abstractions for primitive values.

Since String objects are treated specially (e.g., there are literal String objects but

no other literal objects), a separate allocator can be specified for String objects

than for other objects. Allocation strategies include allocP4F , alloc0CFA, alloccp , and

alloc>. Additional allocation strategies may easily be added by creating subclasses of

KontAllocator, ObjectAllocator, and so forth.
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The abstract interpreter currently supports four styles of abstraction for primitives

and more can be added by creating a subclass of the appropriate class; for example, a

new abstraction for integers could be created with a new subclass of IntRegister.

The implemented abstractions are α>, αINT32, αI , and αc. Each of these abstractions

is described in Section 2.2.1.1. Analogous abstractions exist for long integers and

single- and double-precision floating point numbers.

If the store were adapted to allow for strong updates instead of weak updates and

if concrete allocators were implemented, it could change from an abstract interpreter

to a concrete interpreter by changing its runtime configuration.

5.3 Register deallocation

The Android SDK coalesces virtual registers during compilation, which leads to

an imprecise analysis. This can be ameliorated by reversing the process; performing a

liveness analysis demonstrates which virtual registers can be separated. This is similar

to a single static assignment transformation without phi nodes; instead of inserting a

phi node, the register in question is simply not separated.

Use-def chains can be used in place of bare registers in frame addresses to attain

the same benefits to precision without requiring transformation of the source code.

This change has the effect of reversing much of the imprecision caused by the register

coalescing done at compile time. Because it distinguishes registers by where they are

accessed in the program, it also reverses much of the imprecision in frame addresses

caused by global store widening.

5.4 Preparation

In Java, addresses in memory must be written before they are read. This invariant is

ensured by a process called preparation by the Java virtual machine specification [32].

Preparation precedes initialization and writes default values to instance and class

members. Default values are either null or 0, depending on the type of the member. In

Dalvik bytecode, per the Dalvik virtual machine specification [16], null is represented

with the number 0, so preparation writes zeros to all members. In Dalvik bytecode,

which is a register-based machine instead of a stack-based machine, default values

are written to local variables in a similar way to preparation for class and instance
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members.

Preparation leads to imprecision in the abstract interpreter because its semantics

use weak updates; the value at every address that is prepared must include 0. This

imprecision can be avoided by skipping preparation in cases where the default value

must be overwritten before it is ever read. For example, when a new object is created,

its constructor is usually called in the next instruction. In this case, the object can be

prepared by retroactively writing zero to every member not written upon returning

from the constructor. As long as every execution does so, all values that may be

unwritten in any execution of the constructor are retroactively prepared.

In order to ensure correctness against a pathological corner case, it is necessary

to ensure that reads during a constructor or class initializer always return zero in

addition to any values in the store.



CHAPTER 6

EMPIRICAL RESULTS

6.1 Methodology

The test suite of applications for measurement comes from the Automated Program

Analysis for Cybersecurity (APAC) program. APAC’s purpose was to develop tools

that could be used to vet software for a curated app store, allowing only those

programs it deemed to be secure. The teams developing these tools tested them at

periodic engagements, where the program provided applications for them to analyze.

The twelve applications in the test suite are the entire set of applications from one

engagement. All applications from the test suite were built for Android 4.4.2.

In order to ensure that comparisons between the a posteriori analysis and the

augmented-state analysis, the augmented-state analysis was implemented as a branch

of the a posteriori analysis. All changes made to one branch were applied to the other,

except where those changes were not applicable.

In order to ascertain the analyses’ correctness and precision, they were compared

against manually measured ground truth. In the case of Filterize, there was a small

enough number of sources and sinks that it was possible to measure the ground truth

exhaustively. In the case of the other applications, samples of the sources and of the

sinks were taken at random. Flows that depended on knowledge of the semantics of

the Android standard library were marked as out of bounds and were not counted as

either positives (possible flows) or as negatives (impossible flows). There were a total

of seven such flows identified: four in the exhaustive count of flows in Filterize and

three in the random sampling for chatterbocs.

Analyses were executed on a server with 12 cores and 64 GB of RAM. It runs

MacOS 10.8.5, Scala 2.11.7, and Java 7. Only four analyses ran at once in an attempt

to ensure that there would be no contention for hardware resources.



79

All analyses used the same configuration, which seems to be reasonably well

optimized for speed and precision. The configuration includes global store widening

and no abstract garbage collection. It uses allocP4F for continuation addresses and

alloccp for objects (including String objects), arrays, and frame pointers. Integers

are abstracted using αI , where I includes the numbers from -1 to 10 inclusively and

all numbers used as IDs in the program’s layout XML; that is, if XML is the set of

IDs in layout XML, I = {−1, 0, . . . , 10} ∪XML. Other primitive types are abstracted

with α>. Analyses timed out after 24 hours and each had 3 GB of RAM available

to it. Taints are sets of labels that identify the location in the program where they

originated.

In one case, a program timed out after finishing abstract interpretation. As

this program had exhibited variability in its execution time, it was run again. As

timing out yields no runtime measurement, no attempt was made to average different

measurements; instead, its measurement in Table 6.1 is marked with an asterisk (*).

Section 7.2 discusses the cause of the variability in execution time.

6.2 Results

The augmented-state analysis timed out or ran out of memory on each application

in the test suite.

Table 6.1 shows the space and time metrics of the a posteriori analysis on

the test suite. It lists the number of states found and instructions covered by

abstract interpretation, the time spent performing abstract interpretation (excluding

initialization, parsing, and information flow), and the time spent on the entire analysis.

Table 6.2 shows the precision metrics of the a posteriori analysis on the test suite.

The column labeled TP (true positives) indicates the number of information flows that

can occur in each app, as identified by manual analysis, that the analyzer correctly

identified. The column labeled FP (false positives) indicates the number of information

flows that cannot occur in each app that the analyzer failed to prove impossible. The

column labeled TN (true negatives) indicates the number of information flows that

cannot occur that the analyzer correctly proved to be impossible. The column labeled

FN (false negatives) indicates the number of information flows that can occur that



80

Application States Instructions AI time (s) Total time (s)

BattleStat 3951 2117 45.9 361.2
chatterbocs – – – –
ConferenceMaster 8926 3150 884.7 1149.9
Filterize 3405 1460 14.4 27.2
ICD9 – – – –
keymaster 13708 4574 28678.5 30175.1
Noiz2 – – – –
PassCheck 10865 4911 341.9 460.6
pocketsecretary 48962 5421 53879.9* 56550.4*
rLurker 1105 915 9.6 22.7
splunge – – – –
Valet 1791 1445 30.9 41.0

Table 6.1: Space and time measurements
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the analyzer failed to identify as potentially possible. There were no false negatives,

as is expected as a result of the proof of noninterference.

Additionally, Table 6.2 contains a total number of information flows from its first

four columns and the percentage of the total flows that were false positives (FP %) or

true negatives (TN %).

6.3 Analysis

These results demonstrate that it is possible to gain automated assurance about

information flows in an expressive low-level language. They also demonstrate what

work remains to be done to this end.

6.3.1 Interpretation

Since the analysis is exponential, it is expected that some programs will fail to

terminate in a practically useful period of time. The applications in the test bench

are mostly of moderate size, when measured either by total instructions or by covered

instructions (Table 6.3). Since abstract interpretation covers all reachable instructions,

instructions not covered are dead code. Each of the applications that times out has a

large number of total instructions, which is unsurprising. They could be either larger

or smaller than typical applications in some other corpus. It would, of course, be

desirable to finish analysis on more applications. However, it is already clear that

many applications can be analyzed in this way.

Since the analysis produces automated assurance about the absence of information

flows, precision in its results is best measured in the total number of true negatives.

Each true negative is an information flow that a human analyst need not check. In

this light, even the least precise analysis (keymaster, with only 64% true negatives)

saves a human analyst a great deal of effort. The four most precise analyses identify

a stunning 92% true negatives, which means that the vast majority of an analyst’s

effort has been saved.

Viewed through the eyes of false positives, which is a more natural fit for analyses

that assist in the identification of bugs, the analysis is still promising. The worst of

the twelve applications reports 32% false positives, which is moderate but acceptable.

Two of them report as few as one false positive.
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Application TP FP TN FN Total FP% TN%

BattleStat 1 1 23 0 25 4% 92%
chatterbocs – – 0 – – – 0%
ConferenceMaster 0 3 22 0 25 12% 88%
Filterize 4 33 263 0 300 11% 88%
ICD9 – – 0 – – – 0%
keymaster 1 8 16 0 25 32% 64%
Noiz2 – – 0 – – – 0%
PassCheck 0 2 23 0 25 8% 92%
pocketsecretary 0 4 21 0 25 16% 84%
rLurker 0 2 23 0 25 8% 92%
splunge – – 0 – – – 0%
Valet 1 1 23 0 25 4% 92%

Table 6.2: Precision metrics: true positives (TP), false positives (FP), etc.

Application Total instructions Instructions covered % covered

BattleStat 3460 2117 61.2%
chatterbocs 22146 – –
ConferenceMaster 34543 3150 9.1%
Filterize 2913 1460 50.1%
ICD9 44820 – –
keymaster 8985 4574 50.9%
Noiz2 17452 – –
PassCheck 17588 4911 27.9%
pocketsecretary 8648 5421 62.7%
rLurker 1580 915 57.9%
splunge 136848 – –
Valet 2864 1445 50.5%

Table 6.3: Total instructions in each application
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6.3.2 Comparing against random chance

Another way these results could be measured is against random chance, in the spirit

of Zitser, Lippman, and Leek [40]. This would require the construction of a feasible

null analysis that performs consistently with intuitions about what random chance

means. It would be beneficial to design an analysis that can actually be constructed.

One such analysis is an analysis that, for each pair of a source and a sink in a

given program, flips an unweighted coin. This analysis has the advantage of being

just as likely to succeed as to fail for any potential information flow. As such, it is

expected that it will be accurate 50% of the time, regardless of how many information

flows are actually possible or impossible. A confidence interval can easily be created,

given an arbitrary p value, against which the results of the information flow analysis

can be compared.

This analysis has several shortcomings. First, it treats all inaccuracies equally.

While this is appropriate for many analyses, it is not true in the case of an analysis

designed for assurance, where a single false negative invalidates the analysis and

where false positives are mere inconveniences. Second, it fails to account for the fact

that information flows are not entirely independent of each other; for example, an

information flow from an unreachable source cannot be realized, regardless of its sink.

Third, the choices of coin weight and p value are entirely arbitrary.

This analysis predicts that our model of random chance would be correct 12.5 times

for an analysis with 25 information flows. The probability that 7 or fewer unweighted

coin flips would be incorrect is 0.022; the probability that 8 or fewer unweighted

coin flips would be incorrect is 0.054. Accordingly, any analysis with 25 potential

information flows that is incorrect at most 7 times is better than random chance plus

its random interval (for a p value of 0.05). This is true of all but keymaster, which

is just shy of the mark at 8 false positives. For Filterize, the probability that 135 or

fewer flows would be incorrect is 0.047; the probability that 136 or fewer flows would

be incorrect is 0.059. Filterize is incorrect 33 times, which accuracy would be obtained

with an unweighted coin with probability 7.06× 10−48. Table 6.4 has complete data.

An analysis with a weighted coin that matches the frequency of potential infor-

mation flows that can be realized seems more suitable at first blush, but quickly
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Application Inaccuracies Flows measured Probability

BattleStat 1 25 7.75× 10−7

chatterbocs – – –
ConferenceMaster 3 25 7.82× 10−5

Filterize 33 300 7.06× 10−48

ICD9 – – –
keymaster 8 25 0.054
Noiz2 – – –
PassCheck 2 25 9.72× 10−6

pocketsecretary 4 25 4.55× 10−4

rLurker 2 25 9.72× 10−6

splunge – – –
Valet 1 25 7.75× 10−7

Table 6.4: A comparison of accuracy against an unweighted coin
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degenerates in extreme cases. A weighted coin for an application, such as rLurker,

pocketsecretary, PassCheck, or ConferenceMaster, for which no measured information

flow could be realized, would always assert that an information flow cannot be realized.

As such, its expectation would be perfect accuracy and its error bound would be of size

zero. A single false positive in the analysis would not only be below the measurement

of random chance; it would be below the error bound. Since it is expected that there

will sometimes be false positives, this comparison is of little use.

6.3.3 Future work

One way many analyses improve their speed is by compromising precision. While

this approach is often useful, initial results indicate that it may not be helpful for

this analysis. It is possible to skip the taint tracking entirely and use only abstract

interpretation to report reachable sources and sinks and then report that all of them

reach each other, but this would be very imprecise. Also, abstract interpretation

dominates analysis time for most applications, so it would also save little time.

Similarly, in initial tests, removing precision from the abstract interpreter did not seem

to be very useful. This is consistent with the results of abstract garbage collection [29],

which improves precision at the cost of asymptotic complexity but generally improves

empirically measured runtime.

Another common solution is to return immediately with little or no information.

While this is possible with many abstract interpreters, the taint tracking phase requires

a complete mapping from states to addresses written and read. It might be possible

to improve speed by removing all precision from the abstract interpreter, effectively

reducing it to the generation of an interprocedural control flow graph. This could,

however, introduce more spurious states and result in a yet slower analysis.

The analysis itself may admit optimization. P4F [14] serves as an example of

such an optimization to abstract interpretation; it provides perfect precision with

regards to function returns at no extra asymptotic computational cost (when the

continuations in the store are widened globally). As such, it removes spurious states

without affecting worst-case complexity. In addition, it may be possible to rewrite the

taint tracking ordering to improve its speed. Simplifications to the memory model

could also improve its efficiency.
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6.3.4 Conclusion

There is still a great deal of work that could be done to improve both speed

and complexity in this analysis. However, its performance as it stands is more than

sufficient to demonstrate that it is fast enough and precise enough to be useful to

analysts who desire a high degree of assurance. The work that remains to be done

indicates that there is even more reason for optimism, as both speed and precision

could improve even further, making the analysis more broadly applicable.



CHAPTER 7

DISCUSSION

7.1 Guarantees

The results of this empirical evaluation demonstrate the utility of the analysis. A

human analyst charged with proving the security of information in an application

could use this analysis to save a great deal of time on a small- or moderate-sized

application. It is trivial to scan a program for relevant sources and sinks; without this

tool, the analyst would have to evaluate all pairings of sources and sinks to prove that

information from the sources never reaches the sinks.

On all of the small- and moderate-sized applications in the test suite, the majority

of these pairings (as measured in the sample) was demonstrated to be safe with the

aforementioned caveats: it cannot detect termination leaks or behaviors that depend

on library code or on bytecode manipulation to circumvent Java’s type system. It is

possible to warn the analyst in these cases. This analysis does not save time on all

applications and does not eliminate all of the work a human analyst would have to

do, but the results suggest that it does eliminate the majority of the work a human

analyst would be required to do without it.

7.2 Nondeterminism

Both analyses are sound, although their precision can vary from invocation to

invocation. Because this nondeterminism concerns only overapproximated behaviors,

it is an issue of precision and not of soundness. This nondeterminism is not manifest

in the programs in the test suite with the current configuration but is theoretically

possible. All of these nondeterministic behaviors occur in part because Scala’s set

operations happen in nondeterministic order. Entry points, class initializers, and the

state exploration queue are all stored in sets and, as such, the order of the operations
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based on these data cannot be predicted at compile time. Nondeterminism can be

avoided by forcing these operations to happen in order.

One situation in which nondeterminism is manifest is the use of stateful primitive

abstractions. Choosing not to abstract the first n integers encountered and then to

abstract the remainder to > is sound. However, different sets of integers might be

abstracted to > in different executions. This could cause the analysis to explore a

branch that cannot be reached by any concrete execution in some executions of the

abstract interpreter but not in others.

One result of nondeterministic order in exploration of the state graph is variability

in the amount of time that state exploration takes. Lyde and Might [27] demonstrated

a large degree of variance in state exploration time in the presence of store widening

with several different orderings. They also showed that there is no one clear choice

for state graph ordering; different programs finish fastest with different exploration

orders.

7.3 Generalized state graph postprocessing

The augmented-state approach to analysis is intuitive but proved to be inefficient.

When designing future analyses based on small-step abstract interpreters, it is likely

that it will be similarly practical to perform the analysis after abstract interpretation

rather than extending the state space. For example, it is likely that this same technique

could be applied to abstract counting [29].

7.4 Analysis–agnostic noninterference

The separation of taint tracking from abstract interpretation suggests that it may

be possible to further distinguish the two analyses from each other. It may be possible

to perform any abstract interpretation on any language and then to perform a taint

tracking analysis on the results of that interpretation. This separation would make it

possible to prove noninterference in a program with any sound abstract interpreter

without additional theoretical work.



CHAPTER 8

RELATED WORK

8.1 Seminal work

Sabelfeld and Myers [34] summarize the literature on information flows done by

2003. This literature review summarizes the problem of information flows and presents

common solutions to it. In particular, it presents explicit flow tracking as a type

system and adds program counter taint to this type system. Sabelfeld and Myers also

describe noninterference.

Denning [7] introduces the idea of taint values as lattices instead of booleans.

Using a lattice of taint values means that adding taint to an already tainted value

means simply finding the least upper bound of the two taints.

Denning and Denning [8] describe a static analysis that guarantees noninterference

(although they do not use the term) on a simple imperative language. They point out

that control flow analysis is necessary to apply their technique to languages with jump

statements and describe the necessary analysis briefly. In addition, they describe how

arrays and data structures can be added to their analysis framework. They do not,

however, consider function calls or exceptional flow. This paper provides a theoretical

framework and a strong example for the many information flow analyses that succeed

it. This work is an extension of these ideas to richer languages.

Volpano et al. [37] validate the claims of Denning and Denning. Volpano and

Smith [38] then extend it to handle loop termination leaks and some exceptional flow

leaks. Their language lacks function calls and use expressions instead of jumps, each

of which adds a significant layer of complexity to exceptional flow. They treat only

arithmetic exceptions resulting from division in their simple language. As with prior

work, they use a type system and ignore jump statements.

Cavallaro et al. [5] dismiss the effectiveness of static techniques in their introduc-

tion. They then discuss the shortcomings of dynamic analyses, particularly against
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intentionally malicious code.

8.2 Entry-point saturation

Android programs use an implicit main function provided by the Android frame-

work. They define event handlers and the Android system invokes them as is

appropriate. As such, injection is nontrivial. Liang et al. [23] introduce entry-point

saturation. Entry-point saturation involves injecting into each entry point of the

program and analyzing to completion. The analyzer continues to inject into each entry

point in turn until it analyzes all entry points without a change to the store; in other

words, it reaches a fixed point.

Additionally, new entry points may be encountered during analysis, as Android

programs can register event handlers dynamically. These additional entry points are

added to the queue and invoked repeatedly until a fixed point is reached.

Entry-point saturation relies on stores with weak updates to guarantee sound-

ness. Reaching a fixed point means that all possible program behaviors have been

encountered—for all possible interleavings of the entry points. It does not address

concurrent execution of event handlers.

8.3 Partial solutions

Many related works address information flows but do not address all implicit flows.

Several of them track only explicit flows while others track some implicit flows but

make no attempt on others.

8.3.1 Explicits only

Chang et al. [6] present a compiler-level tool that transforms untrusted C programs

into C programs that enforce specified policies. They make no attempt to address

implicit information flows.

Kim et al. [21] perform an abstract interpretation on Android programs. They

desugar Android programs to an intermediate language they call Dalvik Core to simplify

their analysis. They then demonstrate their work empirically on 90 applications and

discuss their precision and performance. They claim soundness but do not claim or

prove noninterference. They do not discuss or address implicit information flows.
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Arzt et al. [2] present FlowDroid, a static analyzer for Android applications. They

model application lifecycles by parsing the manifest and monitoring asynchronously

executing components and callback registration. They explicitly state that they do

not address implicit information flows (although a blog post for the project says that

they have added support for implicits). The implementation of the analyses in this

work originally parsed Android’s XML files, which are stored in a binary format, using

FlowDroid’s library. The analyzer now uses its own code.

8.3.2 Some implicits

Xu et al. [39] perform a source-to-source transformation on C programs to instru-

ment them for taint tracking. The resulting programs identify explicit information

flows. They also discuss implicit information flows and their rationale for mostly

ignoring them. They do track implicit flows in conditional expressions and array

dereferences where the index is tainted.

The authors discuss optimizations specific to their implementation and the situa-

tions in which they can be safely used. Because C allows for pointer arithmetic and

because their taint labels occur in program space, their instrumentation also must

guarantee that the program cannot write taint labels.

C programs instrumented using this system can execute function calls and ex-

ceptional control flow in the same way that all C programs do. However, implicit

information flows from if statements, function calls to pointers, exceptional control

flow, and virtually any other control flow mechanism are ignored.

Kang et al. [20] perform a dynamic analysis called DTA++ that operates on

Windows x86 binaries and tracks information flows. Their work focuses on unin-

tentional implicit information flows in benign programs and emphasizes the need

to avoid false positives—so much so that they allow false negatives. As such, this

work presents a closer approximation to soundness than does a strictly explicit taint

tracking mechanism but does not provide guarantees of noninterference.

The implicit flows targeted in DTA++ are those where few inputs cause the

program to execute a branch and the remainder cause it to execute another. This is

a logical choice, as the program behaviors along the first branch can give attackers

relatively precise information.
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DTA++ operates in two phases. In the first, traces from test cases generated either

manually or by some other tool are used to create DTA++ rules, or specifications for

additional taints to be made when certain branch conditions are tainted. The second

phase performs ordinary explicit taint propagation and implicit taint propagation

based on DTA++ rules.

Liang and Might [24] present a Scheme-like core calculus for scripting languages

like Python. Their core language is expressive enough to contain not only function

calls but also call/cc as a primitive. They present both concrete and abstract semantics

for an A-normalized form of their core calculus and demonstrate bisimulation but do

not claim or prove noninterference. Any treatment of implicit information flows is

handled strictly by syntax and is not applicable to a language whose branches are

jumps.

8.4 Work that tracks implicit flows soundly

Few works in the literature present systems that guarantee noninterference. Those

that do guarantee noninterference often do so tangentially. As a result, the analyses

tend to operate on simple languages that are not intended for general use.

8.4.1 Giacobazzi and Mastroeni

Giacobazzi and Mastroeni [12] demonstrate an abstract interpreter on programs

in IMP. Their interpreter exists only as a platform for the rest of their paper. They

demonstrate the formalization of noninterference properties, discuss declassification

in such a framework, and describe in detail how to compute a maximally powerful

attacker for which a particular program is secure.

The purpose of this work is not to present a practical analysis for a real-world

language but to discuss what can be done when such an analysis is performed.

Accordingly, the analysis itself is unremarkable. The analyzer operates on a language

that lacks functions and exceptional control flow—including the inability to break

from a loop. It relies on the syntax to delineate the effects of branching instructions.

As a result, this analysis is not suitable for Android applications.
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8.4.2 Askarov et al.

Askarov et al. [3] also discuss noninterference. As is the case with Giacobazzi’s

work, this paper is not primarily about an analyzer. Rather, this paper is about

different modifications of noninterference, most especially termination-insensitive

noninterference. The paper demonstrates the sorts of information leakages that are

possible when attackers can observe divergence. The analyzer and its rules serve as

an illustration, as do the example programs.

The language analyzed in this paper serves to illustrate the interference properties

presented but is not designed to operate on practical languages. In particular, the

analyzer assumes syntactic boundaries on conditional statements and loops and lacks

functions and exceptional control flow.

8.4.3 Liu and Milanova

Liu and Milanova [25] perform a static analysis on Java programs that tracks both

explicit and implicit information flows. Their analysis performs the static analysis

suggested by Denning and Denning [8]; it calculates the postdominators of basic

blocks to determine the extent of a conditional statement’s effect on control flow.

Although they do not address jump statements explicitly, this technique is applicable to

languages with jump statements. They go on to discuss and demonstrate applications

of this analysis to concurrent execution models. Lastly, they present results of their

analysis on a small number of test applications.

Although Liu and Milanova present an analysis technique, they do not present

a grammar or prove noninterference. Furthermore, they do not discuss exceptional

control flow. They mention interprocedural postdominance but offer no discussion of

how postdominance can be calculated when faced with return statements.

8.4.4 Pottier and Simonet

Pottier and Simonet [33] present a type system that guarantees noninterference

in an ML-like language. As noninterference relies on multiple program traces, their

system allows for certain expressions to bifurcate; they may have one value for one

execution and another value for another execution. These variances are stored in

brackets. Noninterference relies on a proof that there are no variances in the output;
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that is, that there are no brackets in the result of the reduction of a program.

The language analyzed in this work is powerful; it even contains exceptional flow.

But its branches are syntactically structured. As such, the work that would need to

be done to apply this system to Dalvik bytecode (to provide provable bounds on the

effects of control flow from branches) is precisely what this work contributes.

8.4.5 Lourenço and Caires

Lourenço and Caires [26] present a type system that proves noninterference in a

language based on the lambda calculus. As such, it is applicable to any language.

They do not present any empirical evidence, so it is unclear how long type checking

takes or how many safe programs do not type check. An empirical evaluation of this

system would be a valuable addition to the literature.

8.5 Dynamic analyses

8.5.1 Moore

Moore et al. [30] present a type system with guarantees about progress-sensitive

security, which is called termination-sensitive noninterference by Askarov et al. [3].

Their type system, together with runtime enforcement, guarantees progress-sensitive

noninterference. The authors then discuss a modification of their system that allows

for a limited amount of information to leak before the runtime enforcement terminates

the program. Notably, their type system relies on a termination oracle built on an

SMT solver.

The authors extend their work to use lattices to represent security values and

then apply the whole system to Jif. They then verify the intraprocedural flows

in Civitas (a remote voting system already proven to preserve progress-insensitive

noninterference) using their system. They follow with a discussion of the modifications

that were required to prove progress-sensitive noninterference. So few modifications

were required that the authors conclude that other nonmalicious programs are likely to

be straightforward to verify in this manner and suggest that requiring progress-sensitive

guarantees is reasonable for security-critical applications.

This analysis sets an important precedent for security research. It does not,

however, treat all information flows; interprocedural flows are simply ignored. It also
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does not guarantee that the program is safe to run except in their runtime environment.

As such, the application of this work is limited to systems willing to adopt a runtime

that does additional checks.

8.5.2 TaintDroid

TaintDroid [10] is a dynamic extension to Android’s runtime environment. Being

a dynamic analysis, it does not purport to identify all possible program behaviors.

Instead, it monitors behaviors as they happen. Also, it tracks only explicit information

flows. The authors mention implicit information flows but do not track them; instead,

they suggest that static analyzers could identify them.

The contribution of TaintDroid, as claimed in the paper, is not innovation in

taint tracking techniques but in their integration into the Android system. The bulk

of the text explains how taints are stored and propagated in TaintDroid. Notably,

TaintDroid tracks taints in storage as well as in memory.

8.6 Programmer-assisted analyses

Some of the work in the literature requires programmer cooperation. These systems

can be useful for safe development but are typically not useful when the people who

want to verify a program are not its developers.

Venkatakrishnan et al. [36] perform a static prepass that adds tracking instructions

to inform a dynamic analysis. This analysis preserves termination-insensitive nonin-

terference. The analysis is performed on an imperative language with branches, loops,

and function calls. Notably, it lacks exceptional control flow. It relies on syntactic

boundaries for the detection of implicit flows.

The static analysis determines which statements can execute along either branch

and, by extension, which variables can be updated. Aliasing is irrelevant to this

analysis because no pointers exist. Implicit flows due to function calls are impossible

as functions are all defined statically. The program transformation is a simple encoding

of updates to variables, including a program counter variable. Before some branches

and loops, the variables in the condition expression are added to the program counter

set. Its old value is preserved so that it can revert after the branch or loop has ended.
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Jia et al. [19] present a system that allows programmers to provide annotations that

are enforced dynamically. These annotations include security labels and declassification.

Enforcement happens as Intents are intercepted and analyzed; individual processes are

left completely alone. If the program trace differs from a program trace for a program

with no access to secret information, the security property has been violated.

This work is designed to enforce Android application permissions. It makes no

attempt to identify information flows, malicious or not, that occur within the scope of

permissions allowed. It also makes no attempt to track flows to or from library calls.

Myers [31] created JFlow, an extension to Java that allows programmers to annotate

values. Its type system performs some static proving and requires some runtime

enforcement of rules. It relies on syntactic bounds on its branches. Furthermore, it

permits several species of covert information flows, such as flows using the hashCode

method of an object and flows using static values.

Heule et al. [18] perform a dynamic analysis on a rich language that includes

lambda. Users must install and use a library to make use of this work, however,

reducing the communication between components to an MPI-like interface.

Buiras, Vytiniotis, and Russo [4] present a Haskell library that performs a hybrid

analysis. Programmers that use this library can guarantee noninterference in Haskell

code.

8.7 Relevant specifications

The official specifications for the bytecode language [15] and the dex file format [16]

provide detailed information about the syntax and semantics of Dalvik bytecode. The

Java Virtual Machine Specification [32] describes the semantics of the JVM.
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