Static analysis of non-interference in expressive
low-level languages

Peter Aldous and Matthew Might

University of Utah, Salt Lake City, USA
{peteya,might}@cs.utah.edu

Abstract. Early work in implicit information flow detection applied
only to flat, procedureless languages with structured control-flow (e.g.,
if statements, while loops). These techniques have yet to be adequately
extended and generalized to expressive languages with interprocedural,
exceptional and irregular control-flow behavior. We present an implicit
information flow analysis suitable for languages with conditional jumps,
dynamically dispatched methods, and exceptions. We implement this
analysis for the Dalvik bytecode format, the substrate for Android. In
order to capture information flows across interprocedural and exceptional
boundaries, this analysis uses a projection of a small-step abstract inter-
preter’s rich state graph instead of the control-flow graph typically used
for such purposes in weaker linguistic settings. We present a proof of
termination-insensitive non-interference. To our knowledge, it is the first
analysis capable of proving non-trivial non-interference in a language
with this combination of features.

1 Introduction

With increasing awareness of privacy concerns, there is a demand for verification
that programs protect private information. Although many systems exist that
purport to provide assurances about private data, most systems fail to address
implicit information flows, especially in expressive low-level languages. Expres-
sive low level languages, such as Dalvik bytecode, do not provide static guaran-
tees about control-flow due to the presence of dynamic dispatch, exceptions and
irregular local jumps.

To demonstrate that a program does not leak information, we prove non-
interference [14]: any two executions of a non-interfering program that vary
only in their “high-security” inputs (the values that should not leak) must exhibit
the same observable behaviors; in other words, high-security values must never
affect observable program behavior. Our analysis proves termination-insensitive
non-interference [2,11,27].

For its foundation, our analysis uses a rich static taint analysis to track high-
security values in a program: high-security values are marked as tainted and,
as (small-step) abstract interpretation proceeds, any values affected by tainted
values are also marked. (Taint analysis is a dynamic technique but an abstract

interpretation of a concrete semantics enriched with taint-tracking makes it a
static analysis.)

We enrich the taint analysis to track implicit flows and prove non-interference
by executing the advice of Denning and Denning [8]. Their advice suggested
that languages without statically bounded control-flow structures could precisely
track implicit information flows with a static analysis that calculated the imme-
diate postdominator (or immediate forward dominator) of every branch in the
program’s control-flow graph.! We show (and prove) that this old and simple
principle fully (and formally) generalizes from flat, procedureless languages to
rich, modern languages by constructing projections of abstract state graphs.

1.1 Contributions

This paper presents an analysis for a summarized version of Dalvik bytecode
that preserves all essential features: conditional jumps, methods, and exceptional
flow. This analysis is similar in spirit to the suggestion of Denning and Denning
but uses an execution point graph instead of the program’s control-flow graph.
The execution point graph is formed by projecting the state graph that results
from an small-step abstract interpreter [28]. Nodes in the execution point graph
contain code points and contextual information such as the height of the stack to
prevent subtle information leaks. Consider, for example, the function in Figure 1.

There are two possible executions
of leak when called when top is
true (and when the captured value

static void leak(boolean top) {

printed is initia.lly set .to false). In if (top) {
ea.ch <.:ase, l.eak immediately recurs, leak(false);
this time with top set to false. At } else {

this point, the topmost stack frame
has top set to false and the other
stack frame has top set to true. This }
leak exploits the difference between }
these stack frames by returning im-
mediately (effectively setting top to
true) in one case—and then proceed-
ing to print the value of top. }
The execution point graph con- 3
tains just enough information about
the stack to prevent leakages of this
variety. During small-step abstract
interpretation, an implicit taint is
added to any value that changes after control-flow has changed due to a high-
security value. Convergence in the execution point graph indicates that control-
flow has converged and, consequently, that no further information can be gleaned

if (sensitive) {
return;

if (!printed) {
printed = true;
System.out.println(top);

Fig. 1: A leak after convergence

1 A node P postdominates another node A in a directed graph if every walk from A
to the exit node includes P.

from it about high-security values. This calculation can be done lazily and is
fully a posteriori; as such, it may be more efficient than performing one abstract
interpretation to create the graph and another to perform taint analysis.

An execution point graph whose nodes consist of a code point and the height
of the stack is preferable to a more precise graph whose nodes contain full stacks;
conflating more execution points means that, in some cases, convergence happens
after fewer execution points. As a result, this less precise graph translates into
more precise tracking of implicit flows.

Section 2 presents a language that summarizes the features of Dalvik byte-
code, gives semantics for the language, and describes the abstraction of this
dynamic analysis to a static analysis. Section 3 presents the proof of termination-
insensitive non-interference. Further discussion and related work follow.

2 Language and semantics

prgm € Program = ClassDef*
classdef € ClassDef ::= Class className {field, ..., field,, mi, ..., mm}
m € Method ::= Def mName {handlery, ... ,handler,, stmti, ..., stmtm}
handler € Handler ::= Catch(in, In, In)
stmt € Stmt ::= In Const (7, ¢)
| in Move(r, r)
| In Invoke(mName, r1, ...,)
| In Return(r)
| In IfEqz(r, In)
| in Add(r, r, 7)
| In NewInstance(r, className)
| In Throw(r)
| In IGet(r, r, field)
| In IPut(r, r, field)
r € Register = {result, exception,0,1,...}
In € LineNumber is a set of line numbers
mName € MName is a set of method names
field € Field is a set of field names
cp € CodePoint ::= (In,m)

Fig. 2: Abstract syntax

2.1 Syntax

The abstract syntax for our summarized bytecode language is given in Figure 2.
See Appendix A for the differences between this language and Dalvik bytecode.
In conjunction with this syntax, we need the following metafunctions:

— M : MName — Method for method lookup

— 7 : CodePoint — Stmt for statement lookup

— next : CodePoint — CodePoint gives the syntactic successor to the current
code point

— H : CodePoint — CodePoint gives the target of the first exception handler
defined for a code point in the current function, if there is any.

— init : Method — CodePoint gives the first code point in a method.

— jump : CodePoint x LineNumber — CodePoint gives the code point in the
same method as the given code point and at the line number specified.

2.2 State space

A state ¢ contains six members, which are formally defined in Figure 3:

1. A code point cp.

2. A frame pointer ¢. All registers in the machine are frame-local. Frame ad-

dresses are represented as a pair consisting of a frame pointer and an index.

A store o, which is a partial map from addresses to values.

A continuation k.

5. A taint store ts, which is a map from addresses to taint values. It is updated
in parallel with the store. Undefined addresses are mapped to the empty set.

6. A context taint set ct, which is a set of execution points where control-flow
has diverged before reaching the current state.

- w

2.3 Semantics

Our semantics require projection metafunctions. height : Kont — Z calculates
stack height and p. : X' — EzecPoint uses height to create execution points.

1+ height (k') if Kk = retk(cp, ¢, ct, ')

height (1) =
cight (x) {0 if 1 — halt

ep(cp, 2) if ¢ = (¢ep, ¢, 0,K, ts, ct) and z = height (k)
pe (¢) = { endsummary if ¢ = endstate

errorsummary if ¢ = errorstate

The concrete semantics for our language are defined by the relation (—) C
2 x Y. In its transition rules, we use the following shorthand: ep_ is a state’s

s € X = (cp,¢,0,k,ts, ct) | errorstate | endstate
¢ € FP is an infinite set of frame pointers
o € Store = Addr — Value
val € Value = INT32 4 ObjectAddress
k € Kont ::= retk(cp, ¢, ct, k) | halt
ts € TaintStore = Addr — P (TaintValue)
tv € TaintValue = Explicit TV + ImplicitTV
etv € ExplicitTV = ExecPoint
itv € ImplicitTV = ExecPoint X ExecPoint
ct € ContextTaint = P (EzecPoint)
ep € EzecPoint ::= ep(cp, z) | errorsummary | endsummary
z € Z is the set of integers
a € Addr ::==sa | fa | oa | null
sa € StackAddress = FP x Register
fa € FieldAddress = ObjectAddress x Field

oa € ObjectAddress is an infinite set of addresses

Fig. 3: Concrete state space

execution point and itv. is the set of implicit taint values generated at a state.
For a state ¢ with context taint set {ep;,...,ep,},

ep. = pc (s) and itve = {(epy,ep.),..., (epn. ep.)}

The Const instruction writes a constant value to a register. Observe that
implicit taints can be applied to a constant assignment.

7 (¢p) = Const(r, ©
(ep, @, 0, K, ts, ct) — (next (cp), ¢, 0, Kk, ts', ct)

, where

sa = (¢,7)
o' = o[sa (]
ts' = ts[sa — itv]

The Move instruction simulates all of Dalvik bytecode’s move instructions.

7 (cp) = Move(rg, rs)
(ep, @, 0, K, ts, ct) — (next (cp), ¢, 0, Kk, ts', ct)
saqg = (¢,74)
sas = (¢,rs)
o' = o[saq — o (sas))

ts' = ts[saq — ts (sas) Uit]

, where

The Invoke instruction simulates Dalvik’s invoke instructions. Virtual method
resolution is deferred to Appendix A. The method’s receiver is in register 1.

7 (¢p) = Invoke(mName, 11, ..., I'y)
(cp, b, 0, K, ts, ct) — (cp', @', o', K/, ts, ct’)’ where
cp’ = init (M (mName))
k' =retk(cp, ¢, ct, k)
¢’ = is a fresh frame pointer address
for each ¢ from 1 to n,
sag; = (¢',i — 1) and sag; = (¢, 1)
o' =o[sag — o (5as1),..., 8044, — 0 (Sasn)]
ts' = ts[saqr — ts (sas1) Uidtvg, ..., Saqn — s (8as,) U itv,]
, et if ts (sas0) =0
B {ct U{ep. } if ts(sas) #0

The Return instruction summarizes Dalvik’s return instructions. The Return
instruction introduces context taint if invocation occurred in a tainted context.

7 (cp) = Return(r) k = retk(cp, ¢, cty, k)
(ep, @, 0,K, ts, ct) — (next (cp’), @', o', K, ts', ct’)
sag = (¢, result)
sas = (¢,r)
o' = o[saq > o (sas))
ts' = ts[saq — ts (sas) Uit]
c,_{ct if et =0
ctU{ep.} if ctp #0
7T (¢p) = Return(r) k = halt
(¢ep, b, 0, K, ts, ct) — endstate

, where

The IfEqz instruction jumps to the given target if its argument is 0:

T (¢p) = IfEqz(r, In)

hy
(Cp, ¢7 o, R, tS, Ct) — (Cplv (7257 o, kR, ts, Ct/)’ e
sas = (¢,7)
o — gump (cp,In) if o (sas) =0
P = neat (cp) if o (sas) #0

o — Jct if ts (sas) =0
) etu {ep.} if ts(sas)#0

The Add instruction represents all arithmetic instructions. Since Java uses 32-
bit two’s complement integers, + represents 32-bit two’s complement addition.

T (ep) = Add(ry, 71, T4
(Cp7 ¢7 O-’ H7 ts’ Ct) % (Inext (Cp) 7¢7 O—/’ I{7 tsl7 Ct)

, where

saq = (¢,7a)
sa; = (¢, 1)
sar = (P, 1)

o' = olsaq — o (sa;) + o (sa,)]

ts' = ts[saq — ts(sa;) U ts (sa,) U itv]

Object instantiation is done with the NewInstance instruction:

Z (cp) = NewInstance(r, className)
(ep, d,0,K, ts, ct) — (next (¢p) , @, 0, K, ts', ct)
oa is a fresh object address
sa = (¢,1)

o' = o[sa + oa]

, where

ts' = ts[sa > itv]

The remaining instructions use an additional metafunction:

T : CodePoint x FP x ContextTaint x Kont —
CodePoint x FP x ContextTaint x Kont

T looks for an exception handler in the current function. If there is a handler,
execution resumes there. If not, searches through the code points in the continu-
ation stack. The accumulation of context taint simulates the accumulation that
would happen through successive Return instructions. Formally:

(cpp, ¢, ct, k) if # (cp) = cpy,
T (epy, Pk, ct, ki) if cp ¢ dom (H) and ct, =0
T (cp, @, ct k) = and k = retk(cpy,, ¢, cti, KK)
T (cpy, Ok, ct Udtve, k) if cp & dom (H) and cty # 0
and k = retk(cpy, ¢k, ctr, ki)

The Throw instruction requires two cases. One is for continued execution at
the specified handler and one is for an error state when no handler can be found.

T (cp) = Throw(r) (cp, , ct, k) € dom (T)
(ep, @, 0,K, ts, ct) = (ep', &', o' K, ts', ct’)
sas = (¢,7)

saq = (¢, exception)
(ep’, @', ct' k') =T (cp, p, ct, k)
o' = o[sag — o (sas))

, where

ts' = ts[saq > ts (sas) U itv]

T (¢p) = Throw(r) (cp, ¢, ct, k) ¢ dom (T)
(¢p, d,0, K, ts, ct) — errorstate

The IGet instruction represents the family of instance accessor instructions
in Dalvik bytecode. It requires three transition rules. In the first, the object
address is non-null. In the others, the object address is null; the second case
shows a handled exception and the third shows a top-level exception.

7 (cp) = IGet(rq, 10, field) oa # null
(ep, @, 0, K, ts, ct) — (next (cp), ¢, 0, Kk, ts', ct)

saq = (¢,ra)
sao = (¢,70)

oa = 0 (sa,)

fa = (oa, field)

o' = o[saq — o (fa)]

ts" = ts[saq — ts (oa) U ts (fa) U itv]

, where

T (cp) = IGet(ry, ro, field) oa =null (cp,¢,ct,k) € dom (T)

(cp,@,0,kK,ts,ct) — (cp', &', 0’ k', s, ct’) » where
(ep’ ¢, ct' k') =T (cp, ¢, ct, k)
sao = (¢,70)
0a, = o (sa,)
Saer = (¢, exception)
0G., is a fresh object address
o' = 0[$Gex > 00y
ts' = t5[saex — ts (sa,) U itve, 0Gey = itv]
Z (cp) = IGet(rq, 1o, field) oa =null (cp, @, ct, k) ¢ dom (T) where

(¢p, ¢, 0, K, ts, ct) — errorstate
sao = (¢,7o)

0a, =0 (sa,)

The IPut instruction also represents a family of instructions; IPut stores
values in objects. Like IGet, IPut requires three transition rules.

7 (¢p) = IPut(ry, 1o, field) oa # null

, wh
Sas = (¢a 7“5)
sao = (¢,70)

oa = o (sa,)

fa = (oa, field)

o' =olfar o (sas)]

ts" = ts[fa > ts (sas) U itv]

T (cp) = IPut(ry, 1o, field) oa =mnull (cp,o,ct,k) € dom (T)
(cp,@,0,K,ts, ct) = (cp', &', o' k' s’ ct’)
(ep', ¢, ct', k') = T(cp, ¢, ct, k)
sao = (P, 15)

0a, =0 (sa,)

, where

Saep = (¢, exception)
00, is a fresh object address
o' = 0[$Gex > 00y

ts' = ts[8aex > ts (8a,) U itvg, 0aey — itv]

T (cp) = IPut(ry, 1o, field) oa =null (cp,¢,ct, k) ¢ dom (T)
(ep, @, 0, K, ts, ct) — errorstate
sao = (¢,70)

0a, =0 (sa,)

, where

2.4 Abstraction

A small-step analyzer as described by Van Horn and Might [28] overapproxi-
mates program behavior and suits our needs. Abstraction of taint stores and
context taint sets is straightforward: they store execution points, which are code
points and stack heights. Code points need no abstraction and the height of
abstract stacks is suitable. Any abstraction of continuations (even that of PD-
CFA [9]) admits indeterminate stack heights; an abstract execution point with
an indeterminate stack height cannot be a postdominator.

3 Non-interference

3.1 Influence

The influence of an execution point ep, is the set of execution points that lie
along some path from ep, to its immediate postdominator ep,, (where ep, ap-
pears only at the end) in the execution point graph.

Given the set V of vertices in the execution point graph and the set E of
edges in that same graph, we can define the set P of all paths from ep, to ep,,:

P ={{epy,....ep,) | Vi€ {0,...,n— 1}, (ep;, epi11) € E Aep; # ep,}

With P defined, we can define the influence of ep,, as:

{epe V |3p=(epy,...,ep,) €EP : ep € p} —{epy, ep,}

3.2 Program traces

A program trace 7 is a sequence (¢1,¢2,...,s,) of concrete states such that

S1 =S — ... =>¢, and g, ¢ dom (—)

3.3 Observable behaviors

Which program behaviors are observable depends on the attack model and is
a decision to be made by the user of this analysis. In this proof, we consider
the general case: every program behavior is observable. A more realistic model
would be that invocations of certain functions are observable, as well as top-level
exceptions. Accordingly, we define obs C X' so that obs = X.

3.4 Valid taints

The given semantics has no notion of taint removal; instead, some taints are
valid and the others are disregarded. Explicit taints are always valid. Implicit
taints are created when some assignment is made. An implicit taint is valid if and
only if its assignment happens during the influence of its branch. Accordingly,
we define the set of all valid taints:

valid = ExplicitTV U {(epy, ep,) € ImplicitTV | ep, € influence (epy)}

3.5 Labeled behaviors

A state ¢ has a labeled behavior if and only if it reads values at one or more
addresses with valid taint or if it occurs at a state with valid context taint. We
define the function inputs : X' — Addr* and labeled : X — P (TaintValue) so
that inputs identifies the addresses read by ¢’s instruction and labeled identifies
the valid taints at those addresses. The use of itv. reflects context taint. The
formal definitions of inputs and labeled are given in Figure 4.

T (¢p) = Const(r, ¢) = inputs (¢) = ()

7 (¢p) = Move(rq, rs) = nputs (s) = ((¢,7s))

7 (¢p) = Invoke(mName, 11, ..., Trn) = inputs (s) = ((¢,71) -+, (D, 7n))

Z (cp) = Return(r) = inputs () = ((¢, 7))

7 (cp) = IfEqz(r, In) = inputs () = ((¢,7))

Z (cp) = Add(rq, 11,) = inputs () = ((¢,71), (¢, 7))

7 (¢p) = NewInstance(r, className) = inputs () = ()

7 (¢p) = Throw(r) = inputs () = ((¢,7))

7 (cp) = 1Get(rq, 10, field) = inputs (s) = ((¢,70),0 ((H,70)),
o (o ((¢,70)) , field))

T (¢p) = IPut(rs, 7o, field) = nputs (s) = ((¢,7s))

labeled (¢) = {tv € TaintValue | 3 a € inputs (¢) U {itvc} : tv € ts(a)} Nwvalid

Fig. 4: A definition of addresses read by instruction. ¢ = (¢p, ¢, o, K, ts, ct)

3.6 Similar stores

Two stores are similar with respect to two frame pointers, two continuations,
and two taint stores if and only if they differ only at reachable addresses that

are tainted in their respective taint stores. This definition requires some related
definitions, which follow.

Two stores are similar with respect to two addresses and two taint stores iff:

. Both stores are undefined at their respective address, or

. Either store is tainted at its respective address, or

. The stores map their respective addresses to the same value, or

. The stores map respective addresses to structurally identical objects.

=W N

Formally,

(01,a1,181) =4 (02, a9, ts2)
=

(a1 ¢ dom (01) Aag ¢ dom (02)) V (1)
(EI tv € tsy(ar) : tv €walid V I tv € tsa(az) : tv € valid) vV (2)
o1 (a1) =02 (a2) V 3)
(01 (a1) = 0oay A o2 (a2) = oaz A (4)

V field € Field, (01, (oay, field) , ts1) ~q (02, (0az, field) , ts))
With this definition, we can define similarity with respect to frame pointers.

Two stores are similar with respect to two frame pointers and two taint stores

if and only if they are similar with respect to every address containing the
respective frame pointers.

Formally,

(01,1, ts1) =g (02, @2, ts2) < Vr € Register, (01, (¢1,7) , t51) =a (02, (¢2,7) , ts2)

Two stores are similar with respect to two frame pointers, two continuations,
and two taint stores iff:

1. The stores are similar with respect to the given pair of frame pointers, and
2. They are recursively similar with respect to the given continuations.

Formally,

(01, ¢1, k1, t51) =5 (02, P2, K2, ts2)

=Y
(01,61, ts1) =g (02, P2, ts2) A (1)
(k1 = K2 = halt v (2)

k1 = retk(cpy, @), ct], K)) A ko = retk(cp,, ¢y, cty, k5) A

(017 (bllv Kllv tSl) Bz (O-Qa ¢/2a K‘/Qa tSQ))

3.7 Similar states

Two states are similar if and only if their execution points are identical and

their stores are similar with respect to their taint stores and frame pointers.
Formally, if ¢; = (¢pq, ¢1,01, K1, ts1, ct1) and ¢ = (cpy, P2, 02, Ka, tS2, cla),
then 1 ¢ G2 = De (gl) = D¢ (§2> N (Ula ¢17 tSl) o (027 ¢27 tSQ).

3.8 Similar traces

Two traces m = (¢1,2,...,5,) and 7@ = (¢],<5,...,¢,) are similar if and only
if their observable behaviors are identical except for those marked as tainted.
We formulate the similarity of traces using a partial function dual : 7 — 7.
Similarity of traces is equivalent to the existence of a function dual such that:

1. dual is injective, and

2. dual maps each state in 7 to a similar state in 7’ if such a state exists, and
3. All states in 7 not paired by dual occur in a tainted context, and

4. All states in 7’ not paired by dual occur in a tainted context, and

5. The pairs of similar states occur in the same order in their respective traces.

Formally,

TR,y < 3 dual
Vi, gel...n, i #j= dual (i) # dual () A (1)
Vg € dom (dual), ¢ = dual (g;) A (2)
V ¢ ¢ dom (dual), itve € valid A (3)
V ¢} ¢ range (dual) , itv, € valid A (4)
Vi,jel...n : dual(s) =g, A dual (s5) =, (5)
1<j=k<l N i=j=2k=1 N 1i>j=>k>1

3.9 Transitivity of similarity

Lemma If two states ¢ and ¢’ are similar and if their execution point’s immediate
postdominator in the execution point graph is ep,,, the first successor of each
state whose execution point is ep,, is similar to the other successor.

Formally, if ¢ ~. ¢/ and

¢3¢ —...>spand ¢ = ¢ — ... =>¢, and

P (§) = ps (¢") = epg and pe (sn) = s (s7,) = €Ppa and

ep,q is the immediate postdominator of ep,, and

v S € {gla cee 7§n—1} U {giv e 7g';n—1}7 DPs (gl) 7é EPpd:s then Sn ¢ g;n

Proof Without loss of generality,

¢=(cp,d,0,K,ts,ct) and ¢ = (cp’, ¢, 0’ k', ts', ct’) and

Sn = (cpn7¢nao'n7'%n7 tSn, Ctn) and §7/’n = (Cpm;¢m,0m7ﬁm7 tSm, Ctm)

We refer to ¢1,...,5,—1 and g7, ..., as intermediate states.
It is given that p. (¢,) = pc (¢),). All that remains is to prove that

(Un> s Ko, tsn) oz (0m7 Dm» Em, tsm)

We know by the definitions of influence and of walid and by induction on
the instructions in the language that all changes to the store between ¢ and ¢,
and between ¢’ and ¢/, are marked as tainted. Crucially, this includes changes to
heap values as well as to stack values. We state this in four cases, which cover
all possible changes to the stores:

1. Addresses added to ¢ in some intermediate state,
2. Addresses added to ¢’ in some intermediate state,
3. Addresses changed in o in some intermediate state,
4. Addresses changed in ¢’ in some intermediate state.

Y a € Addr,

a ¢ dom (o) Aa € dom (o) = ts, (a) N valid # 0 (1)
a ¢ dom (c') Na € dom (o) = tsy (a) Nvalid # () (2)
o (a) # on (a) = ts, (a) Nvalid # 0 (3)

o’ (a) # om (a) = sy, (a) Nwalid # 0 (4)

The only changes that can occur to the continuation stack in any circum-
stance are removal of stack frames (Return, Throw, IGet, and IPut instructions)
and the addition of new stack frames (Invoke instructions).

Since Invoke uses only fresh stack frames, all stack addresses with frames
created in intermediate states (FPy) are undefined in o and o’

V r € Register, ¢y € FPy, (¢f,7) ¢ dom (o) U dom (o”)
This, together with our knowledge that all updates to heap values are tainted,

proves that o, and o, are similar with respect to any pair of frame pointers if
one of those is in F/Py:

on € FPf \ ¢m S FPf = (O'na(bnv tsn)) (Uma¢m7 tsm)

We know from p. (s) = pc (¢') that the stack heights in ¢ and ¢’ are equal.
We also know because of the restrictions of stack operations that ¢, is either ¢,
a fresh stack frame, or some stack frame from within . Similarly, we know that
¢m is either ¢, a fresh stack frame, or some stack frame from within &’. If ¢,, is
not fresh, we know the continuation stack below it is identical to some suffix of
k. Crucially, this means that no reordering of existing frame pointers is possible.
The same relationship holds between ¢,,, and ’. As such, ¢,, and ¢,, are either
¢ and ¢, some pair from continuations at the same height from halt, or at least
one of them is fresh. The same is true of each pair of frame pointers at identical
height in x, and k.. In all of these cases, the two stores must be similar with
respect to the frame pointers and their taint stores. Accordingly, we conclude:

(Jru Oy Ko, tsn) o (Um7 Dm» Em, tsm)

3.10 Global transitivity of similarity

Lemma Any two finite program traces that begin with similar states are similar.
Formally, if 7 = (¢1,...,,) and 7" = {(¢],...,¢}.), then ¢; = ¢ = 7 =, 7’

Proof By induction on transitivity of similarity.

3.11 Labeled interference in similar states

Lemma Any two similar states exhibit the same behavior or at least one of them
exhibits behavior that is labeled as insecure.

61 R G = labeled (¢1) # OV labeled (s2) # O V
Vi€ (1,...n),(01,a;, ts1) =4 (02,0}, tsa) , where
inputs (s1) = (a1, .. .,a,) and inputs (s2) = {a},...,al) and
G1 = (epy, 1,01, K1, ts1, ct1) and ¢ = (cpy, 2, 02, Ko, ts2, cta)
Proof By the definition of similarity, the contents of both states’ stores are

identical at reachable, untainted addresses. Thus, one of the calls labeled must
return an address or the calls to inputs must match.

3.12 Concrete termination-insensitive labeled interference

Any traces that begin with similar states exhibit the same observable behaviors
except for those labeled as insecure.
Formally, if 7 = (¢1,¢2,...,6,) and 7" = (g1, <%, ...,q,) and ¢; ~¢ g7, then

Ve em ¢ ¢ obs V labeled (¢;) A0 Vv E|§]/-€7T/ : giz§g§

Observe that because the choice of traces is arbitrary, 7’ is also examined.

Proof By global transitivity of similarity, 7 and 7’ are similar. Every state in 7
or 7', then, is similar to a state in the other trace or has a valid context taint. By
the definition of labeled, states with valid context taints report those behaviors.

By the definition of similarity, similar states in similar traces occur in the
same order.

3.13 Abstract non-interference

Lemma Abstract interpretation with the given semantics detects all possible
variances in externally visible behaviors.

Proof Since the abstract semantics are a sound overapproximation of the con-
crete semantics, they capture the behavior of all possible executions. Since con-
crete executions are proven to label all termination-insensitive interference, the
absence of labels reported by abstract interpretation proves non-interference.

4 Discussion

Our analysis proves termination-insensitive non-interference, which allows diver-
gence leaks; postdominance only considers paths that reach the exit node, so it
excludes infinite paths. With termination analysis (a well understood technique),
this analysis could prove non-interference without qualification. Side channel at-
tacks, such as timing attacks, are beyond the scope of this paper.

It is possible that precision could be improved with less precise execution
points. This would require a weaker definition of state similarity, such as simi-
larity with respect to frame pointers but not to those in the continuation stacks.

Both the precision and complexity of this analysis depend on those of the
abstract interpreter chosen. Imprecisions inherent to the choice of abstractions
create false positives. For example, an abstract interpreter might simulate mul-
tiple branches executing when only one is possible—and, accordingly, would add
unnecessary taint to values assigned during execution of those branches. Addi-
tionally, convergence admits some overtainting; different branches could assign
identical values to a register. In this case, taint would be assigned unnecessarily.
Accordingly, other improvements to precision may be possible.

5 Related work

Sabelfeld and Myers [26] summarize the early work on information flows.

Denning [7] introduces the idea of taint values as lattices instead of booleans.
Denning and Denning [8] describe a static analysis on a simple imperative lan-
guage and discuss how it could be applied to a language with conditional jumps.
They do not discuss how it could be applied to a language with procedures and
exceptional flow. Volpano, et al. [30] validate the claims of Denning and Denning
for languages with structured control-flow. Volpano and Smith [31] then extend
it to handle loop termination leaks and some exceptional flow leaks.

Chang and Streiff [5] present a compiler-level tool that transforms untrusted
C programs into C programs that enforce specified policies. Kim et al. [19] per-
form an abstract interpretation on Android programs. Arzt et al. [1] present
FlowDroid, a static analyzer for Android applications. All of these papers limit
their analyses to explicit information flows although the FlowDroid project does
claim in a blog post to have support for implicit information flows.

Xu et al. [32] perform a source-to-source transformation on C programs to
instrument them for taint tracking and track one class of implicit information
flows. Kang et al. [18] perform a dynamic analysis called DTA++ that operates
on Windows x86 binaries and tracks information flows. DTA++ explicitly allows
for false negatives in order to minimize false positives. Liang and Might [21]
present a Scheme-like core calculus for scripting languages like Python. Their
core language is expressive enough to contain not only function calls but also
call/cc as a primitive but do not detect implicit information flows.

Giacobazzi and Mastroeni [13] demonstrate an abstract interpreter on pro-
grams in a simple imperative language that lacks functions and exceptional
control-flow—the kind of language that the technique suggested by Denning
and Denning [8] addresses. Askarov, et al. [2] also noninterference in a Jif-like
language with syntactic boundaries on its control-flow constructs and that lacks
functions and exceptional control-flow. Liu and Milanova [22] perform a static
analysis on Java programs that tracks implicit information flows. Their analysis
does as Denning and Denning [8] suggested; it calculates postdominance to de-
termine the extent of a conditional statement’s effect on control-flow. However,
they do not present a grammar, prove non-interference, or discuss exceptional
control-flow. Pottier and Simonet [25] present a type system that guarantees
noninterference in an ML-like language. Their technique relies on syntactic struc-
tures. Barthe and Rezk [3] perform an analysis on Java bytecode but assume a
postdominance calculation, even for exceptional control-flow. They also assume
type annotations for functions. Cousot and Radia [12] discuss non-interference
but do not discuss interprocedural flows.

Cavallaro, et al. [4] dismiss the effectiveness of static techniques. They then
discuss the shortcomings of dynamic analyses, particularly against intention-
ally malicious code. Moore, et al. [23] present a type system that, with runtime
enforcement and a termination oracle, guarantees progress-sensitive noninter-
ference (also called termination-sensitive noninterference). TaintDroid [10] is a
dynamic extension to Android’s runtime environment. Being a dynamic analysis,
it does not purport to identify all possible program behaviors.

Venkatakrishnan, et al. [29] perform a static pre-pass that adds tracking
instructions to inform a dynamic analysis. This analysis preserves termination-
insensitive noninterference but ignores exceptional control-flow. Jia et al. [17]
present a system that dynamically enforces annotations, including security labels
and declassification. Myers [24] created JFlow, an extension to Java that allows
programmers to annotate values and that uses a type system with both static
and dynamic enforcement. It does not guarantee non-interference.

Liang, et al. [20] introduce entry-point saturation to properly model Android
programs, which use several entry points instead of one. Entry-point saturation
injects repeatedly into all entry points until encountering a fixed point and would
allow the analysis in this paper to be applied to full Android programs. Van Horn
and Might [28] demonstrated that abstract interpreters can be constructed au-
tomatically from concrete interpreters. Earl, et al. [9] demonstrated an abstract
interpretation that operates in a pushdown automaton.

The official specifications for the bytecode language [15] and the dex file
format [16] provide detailed information about Dalvik bytecode.

6 Conclusion

As we claimed, Denning and Denning’s principle does generalize and extend
to expressive low-level languages such as Dalvik bytecode. The key twist was
to extend postdominance from control-flow graphs to interprocedural execution
point graphs, and to extract these graphs as projections from small-step abstract
interpretations over concrete semantics bearing taint-tracking machinery.

Acknowledgements This article reports on work supported by the Defense Ad-
vanced Research Projects Agency under agreements no. AFRL FA8750-15-2-
0092 and FA8750-12- 2-0106. The views expressed are those of the authors and
do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

References

1. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’14, pages 259-269, New York, NY, USA, 2014. ACM.

2. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninter-
ference leaks more than just a bit. In Proceedings of the 13th European Symposium
on Research in Computer Security: Computer Security, ESORICS 08, pages 333—
348, Berlin, Heidelberg, 2008. Springer-Verlag.

3. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In Proceedings of
the 2005 ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation, TLDI 05, pages 103-112, New York, NY, USA, Jan. 2005.
ACM.

4. L. Cavallaro, P. Saxena, and R. Sekar. On the limits of information flow techniques
for malware analysis and containment. In D. Zamboni, editor, Detection of Intru-
sions and Malware, and Vulnerability Assessment, volume 5137 of Lecture Notes
in Computer Science, pages 143-163. Springer Berlin Heidelberg, 2008.

5. W. Chang, B. Streiff, and C. Lin. Efficient and extensible security enforcement
using dynamic data flow analysis. In Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS ’08, pages 39-50, New York, NY,
USA, 2008. ACM.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

U. Combinator research group. Tapas: Dalvik bytecode analysis in Scala.
https://github.com/Ucombinator/Tapas, 2014.

D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236-243, May 1976.

D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504-513, July 1977.

C. Earl, 1. Sergey, M. Might, and D. Van Horn. Introspective pushdown analysis of
higher-order programs. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 177-188, New York, NY,
USA, 2012. ACM.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. pages 1-6, 2010.

J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143-147, 1974.
S. Genaim and F. Spoto. Information flow analysis for java bytecode. In R. Cousot,
editor, Verification, Model Checking, and Abstract Interpretation, volume 3385 of
Lecture Notes in Computer Science, pages 346-362. Springer Berlin Heidelberg,
2005.

R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameterizing non-
interference by abstract interpretation. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’04, pages
186-197, New York, NY, USA, 2004. ACM.

J. A. Goguen and J. Meseguer. Security policies and security models. In 2012
IEEE Symposium on Security and Privacy, pages 11-11. IEEE Computer Society,
1982.

Google. Bytecode for the Dalvik VM. http://source.android.com/devices/tech/
dalvik/dalvik-bytecode.html, 2014.

Google. Dalvik executable format. http://source.android.com/devices/tech/
dalvik/dex-format.html, 2014.

L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima, S. Kiy-
omoto, and Y. Miyake. Run-time enforcement of information-flow properties on
android. In J. Crampton, S. Jajodia, and K. Mayes, editors, Computer Security —
ESORICS 2013, volume 8134 of Lecture Notes in Computer Science, pages 775—
792. Springer Berlin Heidelberg, 2013.

M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: Dynamic taint
analysis with targeted control-flow propagation. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2011. The Internet Society, Feb.
2011.

J. Kim, Y. Yoon, K. Yi, and J. Shin. Scandal: Static analyzer for detecting privacy
leaks in android applications. Mobile Security Technologies, 2012.

S. Liang, A. W. Keep, M. Might, S. Lyde, T. Gilray, P. Aldous, and D. Van Horn.
Sound and precise malware analysis for android via pushdown reachability and
entry-point saturation. In Proceedings of the Third ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, SPSM ’13, pages 21-32, New York,
NY, USA, 2013. ACM.

S. Liang and M. Might. Hash-flow taint analysis of higher-order programs. In
Proceedings of the Tth Workshop on Programming Languages and Analysis for
Security, PLAS 12, pages 8:1-8:12, New York, NY, USA, 2012. ACM.

Y. Liu and A. Milanova. Static information flow analysis with handling of implicit
flows and a study on effects of implicit flows vs explicit flows. In Software Main-

tenance and Reengineering (CSMR), 2010 14th European Conference on, pages
146-155, Mar. 2010.

23. S. Moore, A. Askarov, and S. Chong. Precise enforcement of progress-sensitive
security. In Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, CCS '12, pages 881-893, New York, NY, USA, 2012. ACM.

24. A. C. Myers. JFlow: practical mostly-static information flow control. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 99, pages 228-241, New York, NY, USA, 1999. ACM.

25. F. Pottier and V. Simonet. Information flow inference for ML.. ACM Transactions
on Programming Languages and Systems (TOPLAS), 25(1):117-158, Jan. 2003.

26. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5-19, Sept. 2006.

27. A. Sabelfeld and D. Sands. A per model of secure information flow in sequen-
tial programs. In S. D. Swierstra, editor, Programming Languages and Systems,
volume 1576 of Lecture Notes in Computer Science, pages 40-58. Springer Berlin
Heidelberg, 1999.

28. D. Van Horn and M. Might. Abstracting abstract machines. In Proceedings of
the 15th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’10, pages 51-62, New York, NY, USA, 2010. ACM.

29. V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Provably correct
runtime enforcement of non-interference properties. In P. Ning, S. Qing, and N. Li,
editors, Information and Communications Security, volume 4307 of Lecture Notes
in Computer Science, pages 332-351. Springer Berlin Heidelberg, 2006.

30. D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis.
Journal of Computer Security, 4(2-3):167-187, Jan. 1996.

31. D. Volpano and G. Smith. Eliminating covert flows with minimum typings. In
Computer Security Foundations Workshop, 1997. Proceedings., 10th, pages 156—
168, June 1997.

32. W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks. In Proceedings of the 15th Conference
on USENIX Security Symposium - Volume 15, USENIX-SS ’06, Berkeley, CA,
USA, 2006. USENIX Association.

A Scaling up to full Dalvik bytecode

Although our abstract syntax is a summarized representation of Dalvik bytecode,
our abstract interpreter operates on Dalvik bytecode. In order to adapt this
analysis to full Dalvik bytecode, it is necessary to recognize the aspects of Dalvik
that the abstract syntax does not represent.

Our syntax and semantics represent only integers and objects. Dalvik byte-
code has floats, doubles, longs, ints, booleans, bytes, shorts, objects, and arrays.
In the Dalvik semantics, only the first four are true primitives; the others are
stored in int registers. Our interpreter takes advantage of the fact that there is
no implicit type conversion in Dalvik bytecode and stores data of disparate types
separately; updating the abstract store with an integer value has no effect on
any float registers that may be stored there. It is possible that an attacker could
manipulate bytecode after compilation to take advantage of this optimization.
Arrays require an address system similar to that of frame pointers.

The Android SDK allocates registers compactly, creating spurious informa-
tion flows. To remedy this, our interpreter performs a liveness analysis and sep-
arates registers into use-define chains.

There are thirteen variants of the Move instruction. Some of them contain
type information; for example, MoveObject moves an object address from one
register to another. Others specify the bit width of the information being moved;
MoveWide moves a pair of registers to another pair of registers and is suitable
for moving longs and doubles.

Dalvik bytecode differentiates between methods and “encoded methods”. In-
vocation instructions have a method ID, which is an index into an array of
methods. Each method has a prototype, a name, and a class ID used to iden-
tify the class that defines the method. Each encoded method includes a method
id, flags such as private or final, and an offset into the code table. From that
offset, it is possible to ascertain the instructions, register count, and exception
handling information for a method. Arguments, including the receiver, if there is
one, are placed at the end of the invocation frame in order and registers are zero-
indexed. A method with a register count of six that takes two (single-register)
arguments and a receiver expects the receiver to be in virtual register 3 and the
two arguments to be in registers 4 and 5.

Virtual method resolution requires the type of the receiver. If the class data
item (indexed with an ID from the class definition item) has an encoded method
whose ID matches the method ID in the invocation instruction, that encoded
method is used. If not, the superclass (whose ID is stored in the class definition)
is examined and the process repeated until a matching method is found.

Methods in Dalvik bytecode can take up to 256 arguments. There are five
kinds of invocations: direct, static, interface, virtual, and super. Direct methods
are methods such as private methods that cannot be overridden and require
no type lookups. Additionally, each kind of invocation has two instructions: a
standard invocation that uses between zero and five registers for its arguments
and a range instruction that specifies a range of consecutive registers as its
arguments.

The provided semantics represent exception handling in Dalvik bytecode
faithfully except that they omit exception types. Checking handlers’ types against
thrown exceptions is straightforward.

Our computational model is not concurrent. As such, we do not support
monitor instructions.

Line numbers are not part of the Dalvik bytecode specification; the bytecode
uses offsets into code. Most disassemblers create labels for legibility; we use zero-
indexed line numbers instead, as we use the parser from the Tapas [6] project,
which also uses them. Code points in our interpreter for full Dalvik bytecode
are represented as pairs of a line number and an encoded method. Additionally,
there are special singleton objects for the end position, which is reached upon
invocation of the halt continuation, and an error position.

	Static analysis of non-interference in expressive low-level languages

