
A posteriori taint-tracking for demonstrating non-interference in

expressive low-level languages

Peter Aldous Matthew Might
University of Utah University of Utah

peteya@cs.utah.edu might@cs.utah.edu

May 26, 2016

Abstract

We previously presented a theory of analysis for
expressive low-level languages that is capable of
proving non-interference for expressive languages.
We now provide an independent result for the taint-
flow analysis that drives tracking of information. In
particular, we show that the taint-tracking can be
derived from the results of a taint-free analysis. In
addition to improving performance, this indepen-
dence broadens the applicability of the underlying
approach to information-flow analysis.

1 Introduction

In our SAS 2015 paper [1], we presented a theory of
analysis suitable for proving non-interference (or the
absence of information flows) in expressive low-level
languages, such as Dalvik bytecode [11]. Dalvik
bytecode, like many modern low-level languages,
contain objects, virtual methods, exceptional flow,
conditional jumps, and mutation. A proof of non-
interference could be used to demonstrate that user
data, such as passwords or GPS location, are not
transmitted to third parties. It could also be used
to verify that a cryptographic primitive does not
leak its key or to verify that sandboxed applications
cannot communicate with each other.

This analysis is distinct from analyses that focus
on identification of bugs; it is successful not when it
helps analysts to identify problems but when it helps
analysts to prove the absence of problems. In order
to help analysts to make guarantees about programs,
this automated analysis eliminates false negatives
(and, consequently, permits false positives).

Our theory of analysis, as presented, did not
discuss tractability. In the process of developing an
implementation, we discovered that taint tracking
can be optimized by performing it in a phase distinct
from abstract interpretation. We discuss the details
of this optimization and its implications.

2 Background

Our theory of analysis uses a small-step abstract
interpreter with components added to prove non-
interference. Subsection 2.1 describes small-step
abstract interpretation and subsection 2.2 explains
non-interference.

2.1 Small-step abstract interpreta-
tion

The CESK [9] evaluation model represents states
in an interpreter’s execution as tuples of control
(C), environment (E), store (S), and continuations
(K). The control represents where the interpreter
is in the program, the environment maps variables
to addresses, the store maps addresses to values,
and a continuation contains the information used to
return from a function. In an imperative program,
these terms roughly approximate (respectively) the
program counter, the frame pointer, the heap, and
the stack.

Van Horn and Might [23] demonstrated that
CESK interpreters can be turned into small step
abstract interpreters by abstracting their state
spaces so that they can be guaranteed to be finite
and modifying their transition rules to permit for
multiple successors to each state. An abstract CESK

1

interpreter produces not a linear program trace but
a graph of abstract states that model all possible
executions from a given initial abstract state.

A sound small-step abstract interpretation rep-
resents all possible program executions in its fi-
nite state space. Typically, soundness is proven by
proving simulation. Simulation proofs show that
abstract interpretation simulates concrete interpre-
tation by showing that the relationship between a
concrete state ς and its abstraction ς̂ holds for their
respective successors. With a concretization func-
tion γ, we can formalize the relationship between ς
and ς̂: ς is in γ (ς̂). If ς ′ is the concrete successor to
ς and ς̂ ′ is some abstract successor to ς̂, then ς ′ must
be in γ (ς̂ ′). Given some initial concrete state ς0
and an initial abstract state ς̂0 whose concretization
includes ς0 and a proof of this inductive property,
we can conclude that the abstract state graph in-
cludes all possible behaviors that the concrete trace
could exhibit.

More formally, our inductive property states that
if ς → ς ′ and ς ∈ γ (ς̂) then there exists an abstract
state ς̂ ′ such that ς̂ ς̂ ′ and ς ′ ∈ γ (ς̂ ′)

2.2 Non-interference

Traditional taint tracking mechanisms apply a se-
curity type or label, also called a taint, to sensitive
values, such as a phone’s location or a user’s pass-
word. Whenever a new value is written, it derives
its security type from the values upon which it de-
pends. Although many security types are binary,
where values with a high security label are sensitive
and must be protected and values low security la-
bel are not sensitive, Denning demonstrated that
security types may be rich lattices [5].

These techniques are effective for explicit infor-
mation flows but fail to detect implicit information
flows, which depend on control flow to leak infor-
mation. For example, different constants might be
assigned to a variable in the true and false branches
of an if statement. More subtly, switch statements,
function calls, function returns, and exceptional
control flow can change control flow. These control
flows can also change values in ways not detectable
by traditional taint tracking mechanisms.

In order to track implicit information flows, taints
can also be applied to the program’s context, per
Denning and Denning [6], who claimed that a static
analysis of postdominance in the control flow graph

would allow context tainting to apply to languages
with arbitrary goto statements. However, they did
not prove non-interference. Furthermore, their anal-
ysis does not include function calls or exceptional
control flow. We demonstrated that these common
language features allow for subtle information leaks
that evade detection even by this postdominance
calculation but that the analysis could be modified
to handle them properly [1]. More specifically, we
calculate postdominance in a richer graph (called
the execution point graph) than the control flow
graph. Nodes in an execution point graph are pairs
of a code point and a natural number, which is the
depth of the stack.

In order to demonstrate the absence of informa-
tion flows, even in the presence of exceptional con-
trol flow and other rich language features, we proved
non-interference, which is the property that sen-
sitive information cannot affect (or interfere with)
behaviors that are visible to an attacker. Since
some programs do not satisfy the requirement of
non-interference, our proof of non-interference is a
proof that any interference will be identified by the
small-step abstract interpreter.

We performed abstract interpretation with taint
flow analysis and propagate taints from context.
After abstract interpretation we calculated the ex-
ecution point graph by projecting the state graph.
Then, we used the execution point graph to demon-
strate that some statements occur at points in the
program unaffected by certain branch statements.
In these cases, the taints in question can be re-
moved or ignored while preserving our proof of non-
interference.

3 Optimization

3.1 A posteriori taint tracking

In our original analysis, context taint grew monoton-
ically during abstract interpretation and spurious
context taints were pruned afterwards. In our new
analysis, we move all of the information flow calcu-
lations to postprocessing.

In order to preserve generality, the abstract inter-
preter must keep track of the relationships between
addresses read and written at each state. This book-
keeping is done outside of the state space and allows
the abstract interpreter to use arbitrary allocators,

2

as described by Might and Manolios [18], without
making it impossible for the taint tracking mecha-
nism to correctly identify where information flows
based on the state graph alone.

Performing information flow analysis after com-
pleting abstract interpretation means that the infor-
mation flow analysis has access to the entire state
graph (and, therefore, the entire execution point
graph). Therefore, context taints can be pruned
at each step of the analysis, maximizing its preci-
sion and preventing spurious context taints from
requiring additional spurious computation.

The state graph, together with the annotations
about addresses read and written at each state, con-
tain enough information to reconstruct all of the
program’s behaviors. As such, it is possible to con-
struct the same information flows as in the original
model (except that some spurious context taints do
not occur). Like graph exploration, propagation of
taints continues until it has reached a fixed point.
The taint tracking algorithm must also track the
context taints seen at code points that invoke func-
tions in order to faithfully recreate context taint
when removing frames from the stack (as happens
upon returning from a function or throwing an ex-
ception). Much like state exploration, where a state
may have multiple successors, taint propagation can
proceed to multiple successor states.

The asymptotic complexity of this analysis is
identical to that of the original analysis. However,
there are improvements to the complexity of parts of
the analysis. For example, the state space is much
smaller, so the calculation of the execution point
graph (quadratic in the size of the state graph) is
less complex. In addition, the removal of spurious
context taints has the potential to act as does ab-
stract garbage collection [19]; by removing spurious
flows, it may improve performance in a way not
predicted by asymptotic complexity.

3.2 Non-interference in a posteriori
taint tracking

The proof of non-interference is essentially the same
for a posteriori taint tracking method as in our
original theory of analysis. It hinges on the same
notion of similarity and proceeds along the state
graph as before.

Traces in this proof are series of concrete states, as
in the original formulation. Each trace follows some

path through the (already explored) state graph. As
in the original proof, taint propagation may traverse
fewer states than are members of its corresponding
concrete trace because the fixed point algorithm
may prove that no additional information can be
found. As before, this does not invalidate soundness
or non-interference.

4 Discussion

4.1 Analysis-agnostic non-
interference

The proof of non-interference requires a sound
state graph and, since allocators may be non-
deterministic, information about the addresses writ-
ten and read at each state. Because the abstract
interpretation’s state graph is unchanged in our re-
vised analysis, all modifications and optimizations
to abstract interpretation may be used without af-
fecting our proof of non-interference. These mod-
ifications and optimizations include but are not
limited to store widening, PDCFA [7], and abstract
garbage collection [19].

Additionally, if the bookkeeping during analysis
were expanded to include stack behaviors, including
each execution point visited when searching for an
exception handler, it may be possible to perform
taint tracking on any sound state graph for any
analysis on any language and get a proof of non-
interference without additional theoretical work.

4.2 Generalized state graph postpro-
cessing

We originally created an analysis by extending the
state space of a CESK machine with data that do not
affect the execution of the program. Subsequently,
we removed the additional information from the
state space and calculating it from a finished state
graph. When designing future analyses based on
small-step abstract interpreters, it is likely that it
will be similarly practical to perform the analysis
after abstract interpretation rather than extend-
ing the state space. For example, it is likely that
this same technique could be applied to abstract
counting [19].

3

5 Related work

Our analysis is an implementation of the analy-
sis presented by Aldous and Might [1]. It builds
upon prior work in small-step abstract interpre-
tation, such as the seminal work by Van Horn
and Might [23] and uses entry-point saturation [16].
Sabelfeld and Myers [22] present a succinct sum-
mary of the concepts in information flow tracking.

Denning [5] and, later, Denning and Denning [6]
pioneered work in taint tracking. Subsequent work
by Volpano and his collaborators [25] [26] continued
along the same vein.

Many analyses are suitable for finding informa-
tion flows but not for proving their absence. Kim
et al. [15] and Arzt et al. [2] both analyze Dalvik
bytecode but do not address implicit flows. Other
analyses [27] [14] [17] [8] [13] [21] on other languages
handle only some implicits, if they address them at
all.

Analyses that guarantee non-interference do ex-
ist [24] [10] [3] [20] [4] but target languages without
important features. As such, these analyses cannot
be applied directly to Dalvik bytecode.

The specification for Dalvik bytecode [11] and
for the dex file format [12] provide details of the
languages and their semantics.

6 Conclusion

Our original theory of analysis is theoretically sound
but admits optimization. Also, it may be possible
to further generalize it, making it a second phase
of analysis that is completely agnostic to the target
language and even to the style of analysis performed
in the first phase.

Additionally, we have shown that any sound state
graph, combined with information about addresses
written and read during the course of execution, can
be used to prove non-interference without the need
for additional theoretical work. Other analyses may
also be performed a posteriori.

Acknowledgements This article reports on work
supported by the Defense Advanced Research
Projects Agency under agreements no. AFRL
FA8750-15-2-0092 and FA8750-12-2-0106. The
views expressed are those of the authors and do

not reflect the official policy or position of the De-
partment of Defense or the U.S. Government.

References

[1] Peter Aldous and Matthew Might. Static anal-
ysis of non-interference in expressive low-level
languages. In Sandrine Blazy and Thomas
Jensen, editors, Static Analysis, volume 9291
of Lecture Notes in Computer Science, pages
1–17. Springer Berlin Heidelberg, 2015.

[2] Steven Arzt, Siegfried Rasthofer, Christian
Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and
Patrick McDaniel. Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Proceed-
ings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation, PLDI ’14, pages 259–269, New York,
NY, USA, 2014. ACM.

[3] Aslan Askarov, Sebastian Hunt, Andrei
Sabelfeld, and David Sands. Termination-
insensitive noninterference leaks more than just
a bit. In Proceedings of the 13th European
Symposium on Research in Computer Security:
Computer Security, ESORICS ’08, pages 333–
348, Berlin, Heidelberg, 2008. Springer-Verlag.

[4] Gilles Barthe and Tamara Rezk. Non-
interference for a JVM-like language. In Pro-
ceedings of the 2005 ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design
and Implementation, TLDI ’05, pages 103–112,
New York, NY, USA, January 2005. ACM.

[5] Dorothy E. Denning. A lattice model of secure
information flow. Communications of the ACM,
19(5):236–243, May 1976.

[6] Dorothy E. Denning and Peter J. Denning. Cer-
tification of programs for secure information
flow. Communications of the ACM, 20(7):504–
513, July 1977.

[7] Christopher Earl, Ilya Sergey, Matthew Might,
and David Van Horn. Introspective pushdown
analysis of higher-order programs. In Pro-
ceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Functional Programming,

4

ICFP ’12, pages 177–188, New York, NY, USA,
2012. ACM.

[8] William Enck, Peter Gilbert, Byung-Gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick Mc-
Daniel, and Anmol N. Sheth. Taintdroid: an
information-flow tracking system for realtime
privacy monitoring on smartphones. pages 1–6,
2010.

[9] Matthias Felleisen and Daniel P. Friedman.
A reduction semantics for imperative higher-
order languages. In Proceedings of the Paral-
lel Architectures and Languages Europe, Vol-
ume I, pages 206–223, London, UK, UK, 1987.
Springer-Verlag.

[10] Roberto Giacobazzi and Isabella Mastroeni.
Abstract non-interference: parameterizing non-
interference by abstract interpretation. In Pro-
ceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages, POPL ’04, pages 186–197, New York,
NY, USA, 2004. ACM.

[11] Google. Bytecode for the Dalvik VM.
http://source.android.com/devices/tech/
dalvik/dalvik-bytecode.html, 2014.

[12] Google. Dalvik executable format.
http://source.android.com/devices/tech/
dalvik/dex-format.html, 2014.

[13] Limin Jia, Jassim Aljuraidan, Elli Fragkaki,
Lujo Bauer, Michael Stroucken, Kazuhide
Fukushima, Shinsaku Kiyomoto, and Yutaka
Miyake. Run-time enforcement of information-
flow properties on android. In Jason Crampton,
Sushil Jajodia, and Keith Mayes, editors, Com-
puter Security – ESORICS 2013, volume 8134
of Lecture Notes in Computer Science, pages
775–792. Springer Berlin Heidelberg, 2013.

[14] Min Gyung Kang, Stephen McCamant,
Pongsin Poosankam, and Dawn Song. DTA++:
Dynamic taint analysis with targeted control-
flow propagation. In Proceedings of the Network
and Distributed System Security Symposium,
NDSS 2011. The Internet Society, February
2011.

[15] Jinyung Kim, Yongho Yoon, Kwangkeun Yi,
and Junbum Shin. Scandal: Static analyzer for

detecting privacy leaks in android applications.
Mobile Security Technologies, 2012.

[16] Shuying Liang, Andrew W. Keep, Matthew
Might, Steven Lyde, Thomas Gilray, Petey Al-
dous, and David Van Horn. Sound and pre-
cise malware analysis for android via pushdown
reachability and entry-point saturation. In Pro-
ceedings of the Third ACM Workshop on Se-
curity and Privacy in Smartphones & Mobile
Devices, SPSM ’13, pages 21–32, New York,
NY, USA, 2013. ACM.

[17] Shuying Liang and Matthew Might. Hash-flow
taint analysis of higher-order programs. In Pro-
ceedings of the 7th Workshop on Programming
Languages and Analysis for Security, PLAS ’12,
pages 8:1–8:12, New York, NY, USA, 2012.
ACM.

[18] Matthew Might and Panagiotis Manolios. A
posteriori soundness for non-deterministic ab-
stract interpretations. In Proceedings of the
10th International Conference on Verification,
Model Checking, and Abstract Interpretation,
VMCAI ’09, pages 260–274, Berlin, Heidelberg,
2009. Springer-Verlag.

[19] Matthew Might and Olin Shivers. Improving
flow analyses via ΓCFA: abstract garbage col-
lection and counting. In Proceedings of the
Eleventh ACM SIGPLAN International Con-
ference on Functional Programming, ICFP ’06,
pages 13–25, New York, NY, USA, 2006. ACM.

[20] Scott Moore, Aslan Askarov, and Stephen
Chong. Precise enforcement of progress-
sensitive security. In Proceedings of the 2012
ACM Conference on Computer and Communi-
cations Security, CCS ’12, pages 881–893, New
York, NY, USA, 2012. ACM.

[21] Andrew C. Myers. JFlow: practical mostly-
static information flow control. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,
POPL ’99, pages 228–241, New York, NY, USA,
1999. ACM.

[22] Andrei Sabelfeld and Andrew C. My-
ers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, September 2006.

5

[23] David Van Horn and Matthew Might. Abstract-
ing abstract machines. In Proceedings of the
15th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’10, pages
51–62, New York, NY, USA, 2010. ACM.

[24] V. N. Venkatakrishnan, Wei Xu, Daniel C. Du-
Varney, and R. Sekar. Provably correct runtime
enforcement of non-interference properties. In
Peng Ning, Sihan Qing, and Ninghui Li, edi-
tors, Information and Communications Secu-
rity, volume 4307 of Lecture Notes in Computer
Science, pages 332–351. Springer Berlin Heidel-
berg, 2006.

[25] Dennis Volpano, Cynthia Irvine, and Geoffrey
Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2–
3):167–187, January 1996.

[26] Dennis Volpano, Cythnia Irvine, and Geof-
frey Smith. A sound type system for secure
flow analysis. Journal of Computer Security,
4(2):167–187, January 1996.

[27] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-
enhanced policy enforcement: a practical ap-
proach to defeat a wide range of attacks. In
Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15, USENIX-
SS ’06, Berkeley, CA, USA, 2006. USENIX
Association.

6

