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Abstract. Task parallel programs that are free of data race are guaran-
teed to be deterministic, serializable, and free of deadlock. Techniques for
verification of data race freedom vary in both accuracy and asymptotic
complexity. One work is particularly well suited to task parallel programs
with isolation and lightweight threads. It uses the Java Pathfinder model
checker to reason about different schedules and proves the presence or
absence of data race in a program on a fixed input. However, it uses a
direct and inefficient transitive closure on the happens-before relation
to reason about data race. This paper presents Zipper, an alternative
to this näıve algorithm, which identifies the presence or absence of data
race in asymptotically superior time. Zipper is optimized for lightweight
threads and, in the presence of many threads, has superior time complex-
ity to leading vector clock algorithms. This paper includes an empirical
study of Zipper and a comparison against the näıve computation graph
algorithm, demonstrating the superior performance it achieves.

1 Introduction

Correctness in task parallel programs is only guaranteed if the programs are free
of data race. A data race is a pair of concurrent uses of a shared memory location
when at least one use writes to the location. The order in which these uses occur
can change the outcome of the program, creating nondeterminism.

Structured parallelism sometimes takes the form of lightweight tasks. Lan-
guages such as Habanero Java, OpenMP, and Erlang encourage the use of new
tasks for operations that can be done independently of other tasks. As a result,
many programs written in this family of languages use large numbers of threads.
In some cases, the number of threads cannot be statically bounded.

Data race is usually undesirable and there is much work to automatically and
efficiently detect data race statically. However, static techniques often report too
many false positives to be effective tools in practice. Precise data race detection
for a single input can be achieved dynamically. Many dynamic techniques use
access histories (shadow memory) to track accesses to shared memory locations.

Vector clocks [12, 22] are an efficient implementation of shadow memory. One
analysis based on vector clocks is capable of reasoning about multiple schedules



2 K. Storey et al.

from a single trace [17]. Its complexity is linear if the number of threads and
locks used is constant. Vector clocks have been extended to more efficient repre-
sentations for recursively parallel programs [1, 6] that yield improved empirical
results. In all of these cases, the complexity of vector clock algorithms is sensitive
to the number of threads used.

When programs are restricted to structured parallelism, shadow memory can
reference a computation graph that encodes which events are concurrent. This
allows the size of shadow memory to be independent from the number of threads
in the program.

The SP-bags algorithm [11], which has been extended to task parallel lan-
guages with futures [26], detects data race by executing a program in a depth
first fashion and tracking concurrent tasks. Other extensions enable locks [5] and
mutual exclusion [25], but can produce false positives.

As an alternative to shadow memory, each task can maintain sets of shared
memory locations they have accessed. Lu et al. [20] created TARDIS, a tool
that detects data race in a computation graph by intersecting the access sets of
concurrent nodes. TARDIS is more efficient for programs with many sequential
events or where many accesses are made to the same shared memory location.
However, TARDIS does not reason about mutual exclusion.

The computation graph analysis by Nakade et al. [24] for recursively task
parallel programs can reason precisely about mutual exclusion [24]. By model
checking, it is capable of proving or disproving the presence of data race over
all possible schedules. Its algorithm for detecting data races in a single trace is
direct, albeit näıve; it computes the transitive closure of the computation graph.
This quadratic algorithm admits significant improvement.

This paper presents such an improvement in the form of Zipper, a new algo-
rithm for detecting data races on computation graphs. Zipper maintains preci-
sion while utilizing mutual exclusion to improve the efficiency of the computation
graph analysis. This algorithm is superior in asymptotic time complexity to that
of vector clock implementations when the number of threads is large. It also
presents an implementation of the algorithm and a comparison with the näıve
computation graph algorithm. The implementation is an addition to the code
base published by Nakade et al., which allows for a direct comparison of the two.

In summary, the contributions of this paper are:

– An algorithm for identifying data races in the framework of Nakade et al.,

– A discussion of the relative merits of vector clocks and this algorithm, and

– An empirical study of both the näıve computation graph algorithm and the
optimized Zipper algorithm.

The structure of this paper is as follows: Section 2 discusses computation
graphs and SP-bags. Section 3 presents the Zipper algorithm, and demonstrates
the algorithm on a small graph. Section 4 contains an empirical study that
compares Zipper to the original computation graph algorithm. Section 5 details
work related to this paper. Section 6 concludes.
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2 Background

2.1 Programming Model

The surface syntax for the task parallel language used in this paper is based on
the language used by Nakade et al. [24] and is given in Figure 1. A program P
is a sequence of procedures, each of which takes a single parameter l of type L.
The body of a procedure is inductively defined by s. The expression language,
e, is elided.

P ::= (proc p (var l : L) s)∗
s ::= s; s | l := e | skip | [if e then s else s]
| [while e do s] | call l := p e | return e
| async p e | [finish s] | [isolated s]

Fig. 1. The surface syntax for task parallel programs.

The async, finish, and isolated have interprocedural effects that influence
the shape of the computation graph. The remaining statements have their usual
sequential meaning. The async-statement calls a procedure p asynchronously
with argument e. The finish statement waits until all tasks initiated within its
dynamic scope terminate.

This programming model disallows task passing and therefore does not cap-
ture some concurrent language constructs like futures. Futures can result in
non-strict computation graphs that Zipper is not currently able to analyze. Re-
lated work for structured parallelism can reason about programming models
that include futures [26, 20] but cannot reason about isolation. ESP-bags can
reason about isolated regions, but only when they commute [25], as discussed in
Section 2.3.

Restrictions on task passing are not unique to this programming model. Task
parallel languages usually restrict task passing in some way in order to ensure
deadlock freedom. For example, Habanero Java [4] restricts futures to be de-
clared final. Deterministic Parallel Ruby [20] requires futures to be completely
independent and to deep copy their arguments. Extending Zipper to treat task
passing is the subject of further research. Despite this restriction, the collection
of concurrent constructs treated in this paper is sufficient to simulate a wide
range of functionality common in modern task parallel languages.

2.2 Computation Graph

A Computation Graph for a task parallel program is a directed acyclic graph
representing the concurrent structure of one program execution [7]. The edges
in the graph encode the happens before relation [19] over the set of nodes:
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≺⊂ N ×N . There is a data race in the graph if and only if there are two nodes,
ni and nj , such that the nodes are concurrent, (ni ||≺ nj ≡ ni ⊀ nj ∧ nj ⊀ ni),
and the two nodes conflict:

conflict(ni, nj) =
ρ(ni) ∩ ω(nj) 6= ∅ ∨
ρ(nj) ∩ ω(ni) 6= ∅ ∨
ω(ni) ∩ ω(nj) 6= ∅,

(1)

where ρ(n) and ω(n) are the sets of read and write accesses recorded in n.
In order to prove or disprove the presence of data race in a program that uses

mutual exclusion, a model checker must be used to enumerate all reorderings
of critical sections [24]. For each reordering, a different computation graph is
generated that must be checked for data race. The main contribution of this
paper is an algorithm that can efficiently check a computation graph for data
race without reporting false positives even in the presence of mutual exclusion.

2.3 The SP-bags Algorithm

The SP-bags algorithm can check a computation graph for data race with a single
depth first traversal. ESP-bags [25] generalizes SP-bags to task parallel models
similar to the one in Figure 1. However, it can report false positives when the
isolated regions in a program do not commute. To demonstrate this limitation,
an example is given where it reports a race when in fact there is none.

ESP-bags maintains shadow memory for each shared memory location. The
reader and writer shadow spaces record the last relevant task to read or write to
the location. Similar shadow spaces exist for isolated regions. To check an access
for data race, one must determine if the last task to access a location is executing
concurrently with the current task. Tasks that are executing concurrently with
the current task are stored in “P-bags”. Serialized tasks are stored in “S-bags”.
Therefore, checking an access for data race reduces to checking whether the last
task to access the location is in a P-bag.

When a task is created with async its S-bag is created containing itself.
Its P-bag is empty. When it completes and returns to its parent, its S-bag and
P-bag are emptied into its parent’s P-bag. When a finish block completes the
contents of its S-bag and P-bag are emptied into its parent’s S-bag.

2.4 Example

The program contained in Figure 2 represents a program with critical sections
that do not commute and therefore cause ESP-bags and similar algorithms to
report races when there are none. There are two isolated blocks in the program. If
the isolated block in procedure main executes first then the shared variable x is
never written. Otherwise, it is written and the isolated block in p happens before
the isolated block in main. Because the happens before relation is transitive, the
read of x in main becomes ordered with the write in p and there is no race.

Table 1 shows the state of the ESP-bags algorithm as it executes the pro-
gram. Only rows that contain state changes are listed. The thread that executes
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1 x := f a l s e // unwritten
2 a := f a l s e
3 proc main ( ) {
4 f i n i s h {
5 async p
6 i s o l a t e d {
7 a := true
8 }
9 y := x

10 }
11 }
12 proc p ( ) {
13 i s o l a t e d {
14 i f ( ! a )
15 x := true // wr i t t en
16 }
17 }

Fig. 2. A simple example of a task parallel program.

procedure main is labeled as T1 and the thread that executes procedure p is
labeled T2. The only finish block is labeled F1.

Line T1 S F1 P T2 S x I-Writer

0 - - - -

3 T1 - - -

5 T1 - T2 -

15 T1 - T2 T2

17 T1 T2 - T2

Table 1. ESP-bags state through Figure 2

The first row shows the initial state of the algorithm. The next two rows
show the correct initialization of T1 and T2 S-bags. On line fifteen, the shared
variable x is written to because of the order in which ESP-bags executes the
critical sections in the program. When T2 completes and the algorithm returns
to the finish block that spawned it, T2 is placed in the P-bag of F1 signifying
that it will be in parallel with all subsequent statements in the finish block.
This is the state that is in play when x is read outside of an isolated block on
line nine. Here ESP-bags reports a race because the last isolated writer is in a
P-bag. This is a false positive.

ESP-bags is an efficient algorithm, but its imprecision makes it unsuitable
when false positives are unacceptable. The goal of the computation graph analy-



6 K. Storey et al.

sis is to precisely prove or disprove the absence of data race. As such, a compar-
ison of the efficiency of ESP-bags with Zipper is not given in this work.

3 The Zipper Algorithm

The algorithm presented by Nakade et al. [24] checks every node against ev-
ery other node. While effective, this algorithm is inefficient. This paper presents
the Zipper algorithm, which is more efficient but still sound. Zipper performs
a depth-first search over non-isolation edges in the computation graph, captur-
ing serialization imposed by isolation. Section 3.1 describes the variables and
algorithmic semantics. Section 3.2 presents the algorithm in several procedures.
Lastly, Section 3.3 shows an example execution of the algorithm.

3.1 Definitions

Integers have lowercase names and collection names (arrays and sets) are capi-
talized. Their types are as follows:

– Z↓, Z↑: Array of sets of node IDs; indices correspond to isolation nodes
– slider↓, slider↑, next branch id , next bag id : Integer
– Z↓λ, Z↑λ, S , I : Array of sets of node IDs; indices correspond to branch IDs
– C : Array of sets of pairs of node IDs; indices correspond to branch IDs
– R: Set of node IDs
– Bλ: Array of sets of branch IDs; indices correspond to bag IDs
– Bi: Array of sets of isolation indices; indices correspond to bag IDs

Zippers encode serialization. The isolation zipper Z captures serialization
with respect to isolation nodes. The “lambda” zipper Zλ captures nodes not in
the isolation zipper in a particular task.

Traversal begins at the topmost async node. Anytime an async node is
visited, each branch is given a new branch ID (tracked with next branch id)
and are queued for evaluation in arbitrary order. As the algorithm traverses
downward, the visited node IDs are added to the set at the index of the branch
ID in the S array. This continues until an isolation node is visited that has an
outgoing isolation edge. Then, contents of the S array set for the current branch
ID are emptied into the set at the index of the isolation node in the down zipper
Z↓. Once a wait node is visited on the way down, all nodes in the S array set for
the current branch ID are emptied into the set at the index of the current branch
ID in the down lambda zipper Z↓λ. The process is then performed again on the
way up, except isolation nodes that have incoming edges are used to trigger a
dump from S into Z↑. Additionally, when an async node is hit the S set for the
current branch is emptied into the up lambda zipper Z↑λ.

When an isolated node is visited, its ID is also placed into the set at the index
of the current branch ID in I , creating an easily-accessible mapping of branch ID
to the isolated nodes on that branch. The ready set R is used to identify which
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async nodes have had all children traversed; therefore after the last branch of a
async node is traversed, the async node ID is placed into the set R to signify
that the algorithm can continue with the wait node that corresponds with the
async node, since all children have been processed. Any time an isolation node is
visited on the way down, slider↓ is set to that isolation node’s index; similarly,
slider↑ is set to the index of isolation nodes seen on the way up, restricting data
race checks to the fewest possible nodes.

When returning to an async node, the set in I at the current branch ID is
emptied into the Bi at the current bag ID. The current branch ID is also placed
into the set at the current bag ID index in Bλ. The Bi and Bλ are used to
indicate nodes that are concurrent and are not serialized by an isolation edge
with the current node.

On the way down a branch, each time a node is visited the p bag id is used to
index into the Bλ and Bi sets. Each of the indices in the Bλ set at the p bag id
index is used to index into the Z↓λ to obtain node IDs that are possibly in
parallel with the current node. Each pair of possibly parallel nodes is placed
into the set located in the C array at the current branch ID. A similar process
is used with Bi and Z↓; however, only indices larger than slider↓ that are in the
set in Bi at the p bag id index are paired and placed in C .

On the way up the same process is followed, except Z↑ and Z↑λ are used,
and only indices smaller than slider↑ are used when indexing into Z↑. Also, node
pairs that are possibly in parallel are not placed in C ; instead, node pairs are
checked against C . A node pair discovered in both the upwards and downwards
traversal is actually in parallel and is checked with conflict.

3.2 The Algorithm

The top level of the algorithm is the recursive analyze function. Before it is
invoked, several variables are declared and initialized:

1: Z↓ = []
2: Z↑ = []
3: Z↓λ = []
4: Z↑λ = []
5: slider↓ = NULL
6: slider↑ = NULL
7: next branch id = 1
8: next bag id = 2
9: R = {}

10: S = []
11: I = []
12: C = []
13: Bλ = [∅, ∅]
14: Bi = [∅, ∅]
15: recursive analyze (entry , 0, 0, 1)
16: procedure recursive analyze(n, branch id , s bag id, p bag id)
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17: if async (n) then
18: async node (n, branch id , s bag id, p bag id)
19: end if
20: if wait (n) then
21: wait node (n, branch id , s bag id, p bag id)
22: end if
23: other node (n, branch id , s bag id, p bag id)
24: end procedure

recursive analyze relies on three helpers. async node analyzes nodes with
async-statements, wait node analyzes nodes that terminate finish-statements,
and other node analyzes other nodes:

1: procedure async node(n, branch id , s bag id, p bag id)
2: thread bag id = next bag id
3: next bag id = next bag id + 1
4: Bλ [thread bag id] = Bλ [p bag id]
5: Bi [thread bag id] = Bi [p bag id]
6: slider↑0 = slider↑
7: slider↓0 = slider↓
8: dslider↑e = slider↑
9: bslider↓c = slider↓

10: for n′ ∈ succs (n) do
11: slider↑ = slider↑0
12: slider↓ = slider↓0
13: id = next branch id
14: next branch id = next branch id + 1
15: S [id ] = ∅
16: C [id ] = ∅
17: new bag id = next bag id
18: next bag id = next bag id + 1
19: Bλ [new bag id] = ∅
20: Bi [new bag id] = ∅
21: recursive analyze (n,next branch id , new bag id, thread bag id)
22: Z↑λ [id ] = S [id ]
23: dslider↑e = min(dslider↑e, slider↑)
24: bslider↓c = max(bslider↓c, slider↓)
25: Bλ [s bag id] = Bλ [s bag id] ∪ {id}
26: Bi [s bag id] = Bi [s bag id] ∪ I [id ]
27: Bλ [thread bag id] = Bλ [thread bag id] ∪ {id}
28: Bi [thread bag id] = Bi [thread bag id] ∪ I [id ]
29: end for
30: slider↓= bslider↓c
31: R = R ∪ {n}
32: j = get join(n)
33: recursive analyze (j , branch id , s bag id, p bag id)
34: slider↑= dslider↑e
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35: return
36: end procedure

1: procedure wait node(n, branch id , s bag id, p bag id)
2: a = get async (n)
3: if a ∈ R then
4: c = get child (n)
5: recursive analyze (c, branch id , s bag id, p bag id)
6: return
7: end if
8: Z↓λ [branch id ] = Z↓λ[branch id ] ∪ S [branch id ]
9: S [branch id ] = ∅

10: return
11: end procedure

1: procedure other node(n, branch id , s bag id, p bag id)
2: S [branch id ] = S [branch id ] ∪ {n}
3: if isolated (n) then
4: i = isoindex (n)
5: slider↓ = i
6: if hasOutgoingEdge (n) then
7: Z↓ [i] = Z↓ [i] ∪ S [branch id ]
8: S [branch id ] = ∅
9: I [branch id ] = I [branch id ] ∪ {i}

10: end if
11: end if
12: checkDown (n, branch id , p bag id)
13: c = get child (n)
14: recursive analyze (c, branch id , s bag id, p bag id)
15: checkUp (n, branch id , p bag id)
16: S [branch id ] = S [branch id ] ∪ {n}
17: if isolated (n) then
18: i = isoindex (n)
19: slider↑ = i
20: if hasIncomingEdge (n) then
21: Z↑ [i] = Z↑ [i] ∪ S [branch id ]
22: S [branch id ] = ∅
23: I [branch id ] = I [branch id ] ∪ {i}
24: end if
25: end if
26: end procedure

Lastly, checkDown and checkUp are used for identifying data races:

1: procedure checkDown(n, branch id , p bag id)
2: for branch id ′ ∈ Bλ [p bag id] do
3: for n′ ∈ Z↓λ

[
branch id ′

]
do

4: C [branch id ] = C [branch id ] ∪ {(n, n′)}
5: end for
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6: end for
7: for i ∈ isoindex (branch id) do
8: if i <= slider↓ then continue
9: end if

10: for n′ ∈ Z↓ [i] do
11: C [branch id ] = C [branch id ] ∪ {(n, n′)}
12: end for
13: end for
14: end procedure

1: procedure checkUp(n, branch id , p bag id)
2: for branch id ′ ∈ Bλ [p bag id] do
3: for n′ ∈ Z↑λ

[
branch id ′

]
do

4: if ((n, n′) ∈ C [branch id ]) ∧ conflicts (n, n′) then reportRace()
5: end if
6: end for
7: end for
8: for i ∈ isoindex (branch id) do
9: if i <= slider↑ then continue

10: end if
11: for n′ ∈ Z↑ [i] do
12: if ((n, n′) ∈ C [branch id ]) ∧ conflicts (n, n′) then reportRace()
13: end if
14: end for
15: end for
16: end procedure

3.3 Zipper Example

Figure 3 is a computation graph that serves to illustrate the Zipper algorithm,
each step of the algorithm is given in Table 2. The Node column in Table 2
represents the visited nodes, in traversal order. The other columns refer to the
global variables and their values at each step. For brevity, empty sets in the Z↓,
Z↑, Z↓λ, and Z↑λ arrays are omitted and nonempty sets are preceded by their
index. Additionally, the S column shows the set at the current branch ID rather
than the entire S array.

At node a in (Figure 3) all variables are initialized to empty; async node is
then called, which calls recursive analyze on line 21. Node b is then visited
in other node, and added to the S set at the current branch ID. Then, node
b is checked for conflicts at line 12 in other node, however, the Bi and Bλ
at p bag id are empty, so no operation takes place. This is true for the entirety
of the first branch; data race checks are performed while traversing the second
branch. It then recursively visits its child node, c. Node c calls other node
and is an isolated node, therefore slider↓ is set to the index of c (0), on line 5.
Node c is also added to S which is emptied into Z↓ at index 0 on lines 7 and
8. Recursion continues until node g. The slider is set to the index of g, but S
is not emptied because the isolation edge is not outgoing as shown on line 6 in
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a

b

c d

e f

g h

i

j

Fig. 3. An example computation graph

other node. Execution continues to node i until the wait node j is visited
and wait node is called.

Node Z↓ Z↑ Z↓λ Z↑λ slider↓ slider↑ S

a [ ] [ ] [ ] [ ] - - { }
b [ ] [ ] [ ] [ ] - - {b}
c [0 : {c, b}] [ ] [ ] [ ] 0 - {b, c}
e [0 : {c, b}] [ ] [ ] [ ] 0 - {e}
g [0 : {c, b}] [ ] [ ] [ ] 3 - {e, g}
i [0 : {c, b}] [ ] [ ] [ ] 3 - {e, g, i}
j [0 : {c, b}] [ ] [1 : {e, g, i}] [ ] 3 - {}
i [0 : {c, b}] [ ] [1 : {e, g, i}] [ ] 3 - {i}
g [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [ ] 3 3 {i, g}
e [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [ ] 3 3 {e}
c [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [ ] 3 0 {e, c}
b [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [ ] 3 0 {e, c, b}
a [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] - - {}
d [0 : {c, b} , 1 : {d}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 1 - {d}
f [0 : {c, b} , 1 : {d}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 1 - {f}
h [0 : {c, b} , 1 : {d} , 2 : {f, h}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 - {f, h}
j [0 : {c, b} , 1 : {d} , 2 : {f, h}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 - {}
h [0 : {c, b} , 1 : {d} , 2 : {f, h}] [2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 2 {h}
f [0 : {c, b} , 1 : {d} , 2 : {f, h}] [2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 2 {f}
d [0 : {c, b} , 1 : {d} , 2 : {f, h}] [1 : {f, d} , 2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 1 {f, d}
a [0 : {c, b} , 1 : {d} , 2 : {f, h}] [1 : {f, d} , 2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] - - {}

Table 2. Step-by-step Zipper algorithm

In wait node the S set is emptied into Z↓λ at the current branch ID on
lines 8 and 9. Node i is placed in S on line 2 in other node, then recursion
returns to node g. The S set is then emptied into Z↑ at index 3 (the index of
g) on lines 21 and 22. Execution continues in a similar fashion until it arrives at
a. Take note that since the execution is returning up the first branch, the S set
is not emptied at node c, since it has an outgoing edge (S empties on the way
down on isolation nodes with outgoing edges and on the way up with incoming
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edges). It is important to note that c and b are in Z↑λ at the branch index. Then
a recursive call is made to traverse the second branch in the same manner as the
first branch, except data race checks will be performed. The data race checks are
not in the table, but are shown in the algorithm in checkDown and checkUp
and described in Section 3.

4 Implementation and Results

4.1 Methods

The implementation of Zipper is an addition to the implementation provided
by Nakade et al. [24] in their paper. The original implementation is available
at https://jpf.byu.edu/jpf-hj/. The benchmarks referenced in their paper, which
are available as part of the same repository, provide a rich comparison of the
two algorithms.

The results of the comparison of the two analyses are included in Table 3. In
the table, the Benchmark column contains the name of the program used. The
Nodes column contains the number of nodes in a computation graph. The Isola-
tion and Race columns indicate, respectively, whether or not isolation and data
race are present. The CG (ms) and Zipper (ms) columns contain the execution
time for the respective analyses in milliseconds. Lastly, ZipperCG is the ratio of the
two time measurements.

The experimental results measure the time taken to model check over all
possible isolation schedules and reason about each resulting computation graph.
All experiments were run on an Intel(R) Xeon(R) Gold 5120 CPU with 8GB
RAM.

4.2 Analysis

Zipper performed better on every benchmark (except for DoAll2OrigNo) whose
computation graph had more than 37 nodes. For all of the benchmarks with 37
nodes or fewer, the Zipper analysis performed slower except for IsolatedBlockNo
and PrimeNumCounter. In all of these smaller cases, the analyses’ execution time
was virtually identical. As expected, the degree to which Zipper outperforms the
computation graph analysis grows with the number of nodes.

While the size of the computation graph is the strongest predictor of rela-
tive runtime performance between the two analyses, other factors contribute to
performance. For example, DoAll1OrigNo and DoAll2OrigNo produce compu-
tation graphs with identical structure. However, they differ in both number and
placement of shared variable reads and writes in their respective nodes. As a
result, the Zipper analysis executes in half the time that the computation graph
analysis does on DoAll1OrigNo. On the other hand, the two analyses take about
the same amount of time when analyzing DoAll2OrigNo.

The key difference between the Zipper algorithm and the CG algorithm is in
the work done to identify the nodes that need to be checked for data race. The
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Benchmark Nodes Isolation Race CG (ms) Zipper (ms) Zipper
CG

ClumpedAcess 11 Y - 4 14 3.5

PrimitiveArrayNoRace 11 - - 1 12 12

PrimitiveArrayRace 11 - Y 1 8 8

SimpleSimpleSimple 11 - Y 1 14 14

SimpleSimpleSimple2 11 - Y 1 7 7

VectorAdd 11 - - 5 18 3.6

DataRaceIsolateSimple 13 Y Y 10 17 1.7

DoubleBranchExample 13 Y - 1 7 7

DataRaceIsolateSimple1 15 Y Y 5 22 4.4

ForallWithIterable 17 - - 4 11 2.75

IsolatedBlockNo 19 Y - 9 2 0.2222

Add 23 - - 18 28 1.5555

PrimeNumCounter 23 Y - 34 22 0.6470

PrimeNumCounterForAll 27 Y - 39 44 1.1282

ScalarMultiply 27 - - 37 41 1.108

TwoDimArrays 27 - - 22 40 1.8181

ReciprocalArraySumFutures 37 - - 32 72 2.25

IntegerCounterIsolated 43 Y - 774 697 0.9005

PrimeNumCounterForAsync 43 Y - 138 103 0.7463

Antidep1VarYes 45 - Y 1271 54 0.0424

Antidep2OrigYes 45 - Y 1234 58 0.0470

ReciprocalArraySum 53 - - 1801 51 0.0283

PipelineWithFutures 62 - - 61 53 0.8688

DoAll1OrigNo 207 - - 650 372 0.5723

DoAll2OrigNo 207 - - 47287 49534 1.0475

Antidep1OrigYes 2005 - Y 247736 58215 0.2349

Antidep2VarYes 2005 - Y 246561 7003 0.0284

Table 3. Comparison of the computation graph and Zipper analyses

Zipper algorithm is able to identify the nodes that execute in parallel much more
quickly than the CG algorithm. If there is a large number of reads and writes in
proportion to the number of nodes, the Zipper algorithm performs comparably
to the CG algorithm, since they both spend a majority of the time checking
conflicting nodes for data race in the same way. Conversely, if there are relatively
few reads and writes in proportion to the number of nodes, identifying the nodes
that need to be checked becomes much more significant in the analysis time.
This makes Zipper more suitable for recursively parallel programs or any task
parallel programs that utilize many light weight threads. The Zipper algorithm
identifies the nodes that need to be checked much quicker than CG and therefore
the overall time is reduced.

4.3 Comparison with TARDIS, SP-bags and Vector Clocks

Like SP-bags and TARDIS, the Zipper algorithm operates as a depth first traver-
sal of a computation graph that represents a single execution of the program.
Zipper tracks reads and writes to shared memory locations in a set for each task
and intersects these sets to check for race. However, Zipper does not union ac-
cess sets and therefore performs more intersect operations than TARDIS. Unlike
TARDIS and SP-bags, Zipper can reason about mutual exclusion and includes
the scheduled order of isolated regions to reduce the number of intersect opera-
tions neccessary to check a graph for race.
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The vector clock algorithm by Kini et al. [17] checks a program execution
for data race by comparing the vector clock of shared memory locations after
they are accessed with the current thread’s vector clock in order to ensure that
the last thread to access the same location is not concurrent with the current
thread. The vector clocks are updated after access events and synchronization
events.

The vector clock algorithm takes O(N(L+T 2)) time to analyze a trace where
N is the number of events in the trace, L is the number of locks used and T is
the number of threads. In the programming model used in this paper L is always
one. It is linear in the length of the trace for programs that use a small, bounded
number of locks and threads.

It takes O(M(T + I)) time for Zipper to analyze a computation graph and
compute the pairs of nodes that are parallel with each other. M is the number
of nodes, T is the number of branches in the computation graph and I is the
number of isolated regions. Zipper must take the intersection of the access sets
for O(M2) pairs containing K events. This makes the total complexity of Zipper
O(M(T + I) +M2K).

When a program repeats many accesses to the same shared memory locations
M and K can be much smaller than N , as TARDIS shows. In this case, Zipper
is more efficient than vector clocks and can scale to larger programs. In addition,
it may be possible to apply the ideas of TARDIS to Zipper in order to achieve
a linear number of intersect and union operations.

5 Related Work

This work is an improvement upon the computation graph analysis by Nakade et
al. [24]. Lu et al. [20] implement a similar analysis based on access sets in their
tool TARDIS. TARDIS only requires a linear number of intersect and union
operations to detect data race in a computation graph but does not support
mutual exclusion.

Feng and Leiserson’s SP-bags algorithm [11] is a sound and complete data
race detection algorithm for a single program execution but it can only reason
about a subset of task-parallel programs that do not use locks. Work has been
done to apply SP-bags to other task-parallel models with the use of futures [26],
async and finish constructs and isolation [25] with limitations discussed in Sec-
tion 2. Defined in [5] the ALL-SETS and BRELLY algorithms extend SP-bags to
handle locks and enforce lock disciplines but can also report false positives when
the execution order of critical sections change the control flow of the program
being verified. Other SP-bags implementations use parallelization to increase
performance [2].

Mellor-Crummey [23] uses thread labels to determine whether two nodes in
a graph are concurrent and gives a labeling scheme that bounds the length of
labels to be proportional to the nesting level of parallel constructs. This work
however, does not treat critical sections at all.
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Many algorithms for detecting data race are based on vector clocks that
map events to timestamps such that the partial order relation on the events is
preserved over the set of timestamps. The complexity of vector clocks algorithm
is sensitive to the number of threads used in a program. Fidge [12] modifies
vector clocks to support dynamic creation and deletion of threads. Christiaens
and Bosschere [6] developed vector clocks that grow and shrink dynamically as
threads are created and destroyed. Flanagan et al. [13] replace vector clocks with
more lightweight “epoch” structures where possible. Audenaert [1] presents clock
trees that are also more suitable for programs with many threads. The time taken
in a typical operation on a clock tree is linear with respect to the level of nested
parallelism in the program. Kini et al. [17] present a vector clock algorithm that
runs in linear time with respect to the number of events in the analyzed execution
assuming the number of threads and the number of locks used is constant. This
assumption also fails in programs that use large numbers of lightweight threads.

This work relies on structured parallelism to reduce the cost of precise dy-
namic analysis. Structured parallelism is strict in how threads are created and
joined, for example, a locking protocol leads to static, dynamic, or hybrid lock-set
analyses for data race detection that are often more efficient than approaches to
unstructured parallelism [9, 10, 28]. Unstructured parallelism defines no protocol
for when and where threads can be created or join together. Data race detec-
tion in unstructured parallelism typically relies on static analysis to approximate
parallelism and memory accesses [16, 18, 27] and then improves precision with dy-
namic analysis [3, 8, 14]. Other approaches reason about threads individually [15,
21]. The work in this paper relies heavily on structured parallelism and it is hard
to directly compare to these more general approaches.

6 Conclusion

The computation graph analysis presented by Nakade et al. [24] is well suited
to task parallel programs with isolation and lightweight threads. However, its
admittedly direct algorithm for identifying data races is inefficient. The Zipper
algorithm achieves the same soundness and completeness as does the direct al-
gorithm with significantly improved asymptotic time complexity and empirical
performance. In programs with many threads, its time complexity is superior to
that of vector clock implementations. This improved algorithm affords improved
efficiency to the computation graph analysis, enabling it to prove the presence
or absence of data race in larger and more complex task parallel programs.
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